Molecular Interactions of CCR5 with Major Classes of Small-Molecule Anti-HIV CCR5 Antagonists

Department of Medicinal Chemistry, Roche Palo Alto, 3431 Hillview Avenue, Palo Alto, CA 94304, USA.
Molecular pharmacology (Impact Factor: 4.13). 04/2008; 73(3):789-800. DOI: 10.1124/mol.107.042101
Source: PubMed


In addition to being an important receptor in leukocyte activation and mobilization, CCR5 is the essential coreceptor for human immunodeficiency virus (HIV). A large number of small-molecule CCR5 antagonists have been reported that show potent activities in blocking chemokine function and HIV entry. To facilitate the design and development of next generation CCR5 antagonists, docking models for major classes of CCR5 antagonists were created by using site-directed mutagenesis and CCR5 homology modeling. Five clinical candidates: maraviroc, vicriviroc, aplaviroc, TAK-779, and TAK-220 were used to establish the nature of the binding pocket in CCR5. Although the five antagonists are very different in structure, shape, and electrostatic potential, they were able to fit in the same binding pocket formed by the transmembrane (TM) domains of CCR5. It is noteworthy that each antagonist displayed a unique interaction profile with amino acids lining the pocket. Except for TAK-779, all antagonists showed strong interaction with Glu283 in TM 7 via their central basic nitrogen. The fully mapped binding pocket of CCR5 is being used for structure-based design and lead optimization of novel anti-HIV CCR5 inhibitors with improved potency and better resistance profile.

  • Source
    • "Of interest, all the tested R5 Envs, including those resistant to maraviroc, CMPD-167 and SCH-412147, were sensitive to TAK-779. Despite these inhibitors having a similar mechanism of action and fitting in the same binding pocket formed by the transmembrane domains of CCR5 (Kondru et al., 2008; Maeda et al., 2006; Seibert et al., 2006), the impact of their binding on the conformation of CCR5 may differ between molecules. This is strengthened by the observation that only TAK-779 was able to inhibit the entry of Envs through the N terminus of CCR5. "
    Dataset: Hu's JGV

    Full-text · Dataset · May 2015
  • Source
    • "gp120 interaction with C-C chemokine receptor 5 (CCR5) or C-X-C chemokine receptor 4 (CXCR4) induces other conformational changes in gp120, which evoke structural re-arrangement of gp41 and enables the viral and cellular membrane fusion, permitting viral entry [4]. CCR5 inhibitors, including maraviroc (MVC), vicriviroc (VCV), aplaviroc, TAK-779 and TAK-220, antagonize this process and have strong anti-viral activity against HIV-1 in vitro[5,6]. Although they bind the hydrophobic pocket within transmembrane domains of CCR5 with high affinity, they occupy different sub-cavities by interacting with different amino acids [6]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Resistance to CCR5 inhibitors, such as maraviroc and vicriviroc is characterized by reduction of maximal percent inhibition which indicates the use of an inhibitor-bound conformation of CCR5 for human immunodeficiency virus-1(HIV-1) entry. It is accompanied by substitutions in gp120 and gp41. Variable domain 3 (V3) plays the most important role, but substitutions outside V3 could also be involved in phenotype resistance. In this work, we investigated how mutations in variable regions of the viral envelope protein gp120 can contribute to CCR5 inhibitor resistance. Methods Resistant isolates were selected by passaging CC1/85 and BaL viruses with sub-inhibitory MVC and VCV concentrations. Mutations in gp160 were identified and mutants containing V2 (V169M), V3 (L317W) and V4 (I408T) were constructed. Results MVC and VCV susceptibility and viral tropism were assessed by single cycle assay. Mutant I408T showed 4-fold change (FC) increase in the half maximal inhibitory concentration (IC50) to MVC, followed by L317W (1.52-FC), V169M (1.23-FC), V169M/I408T (4-FC) L317W/I408T (3-FC), V169M/L317W (1.30-FC), and V169M/L317W/I408T (3.31-FC). MPI reduction was observed for mutants I408T (85%), L317W (95%), V169M/I408T (84%), L317W/I408T (85%) and V169M/L317W/I408T (83%). For VCV, I408T increased the IC50 by 2-FC and few mutants showed MPI reduction less than 95%: I408T (94%), L317W/I408T (94%) and V169M/L317W/I408T (94%). All mutants remained R5-tropic and presented decreased infectivity. Conclusions These results suggest that mutations in the V4 loop of HIV-1 may contribute to MVC and VCV resistance alone or combined with mutations in V2 and V3 loops.
    Full-text · Article · Jun 2013 · AIDS Research and Therapy
  • Source
    • "CCR5 antagonists belong to a relatively new class of HIV-1 antivirals known as entry inhibitors. They act by binding to the hydrophobic pocket in CCR5 formed by the transmembrane helices [9-14], which leads to structural alterations in the ECLs such that they are no longer recognized by gp120 [10,13-15]. The structure of the N-terminus does not appear to be affected by the binding of CCR5 antagonists to CCR5 [15]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The CCR5 antagonist maraviroc (MVC) inhibits human immunodeficiency virus type 1 (HIV-1) entry by altering the CCR5 extracellular loops (ECL), such that the gp120 envelope glycoproteins (Env) no longer recognize CCR5. The mechanisms of HIV-1 resistance to MVC, the only CCR5 antagonist licensed for clinical use are poorly understood, with insights into MVC resistance almost exclusively limited to knowledge obtained from in vitro studies or from studies of resistance to other CCR5 antagonists. To more precisely understand mechanisms of resistance to MVC in vivo, we characterized Envs isolated from 2 subjects who experienced virologic failure on MVC. Results Envs were cloned from subjects 17 and 24 before commencement of MVC (17-Sens and 24-Sens) and after virologic failure (17-Res and 24-Res). The Envs cloned during virologic failure showed broad divergence in resistance levels, with 17-Res Env exhibiting a relatively high maximal percent inhibition (MPI) of ~90% in NP2-CD4/CCR5 cells and peripheral blood mononuclear cells (PBMC), and 24-Res Env exhibiting a very low MPI of ~0 to 12% in both cell types, indicating relatively “weak” and “strong” resistance, respectively. Resistance mutations were strain-specific and mapped to the gp120 V3 loop. Affinity profiling by the 293-Affinofile assay and mathematical modeling using VERSA (Viral Entry Receptor Sensitivity Analysis) metrics revealed that 17-Res and 24-Res Envs engaged MVC-bound CCR5 inefficiently or very efficiently, respectively. Despite highly divergent phenotypes, and a lack of common gp120 resistance mutations, both resistant Envs exhibited an almost superimposable pattern of dramatically increased reliance on sulfated tyrosine residues in the CCR5 N-terminus, and on histidine residues in the CCR5 ECLs. This altered mechanism of CCR5 engagement rendered both the resistant Envs susceptible to neutralization by a sulfated peptide fragment of the CCR5 N-terminus. Conclusions Clinical resistance to MVC may involve divergent Env phenotypes and different genetic alterations in gp120, but the molecular mechanism of resistance of the Envs studied here appears to be related. The increased reliance on sulfated CCR5 N-terminus residues suggests a new avenue to block HIV-1 entry by CCR5 N-terminus sulfopeptidomimetic drugs.
    Full-text · Article · Apr 2013 · Retrovirology
Show more