Article

Pharmacological characterization of AC-262536, a novel selective androgen receptor modulator

Authors:
  • Independent Researcher
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Because of the limitations and liabilities of current testosterone therapies, non-steroidal tissue-selective androgen receptor modulators may provide a clinically meaningful advance in therapy. Using a functional cell-based assay AC-262536 was identified as a potent and selective AR ligand, with partial agonist activity relative to the natural androgen testosterone. A 2-week chronic study in castrated male rats indicated that AC-262536 significantly improves anabolic parameters in these animals, especially in stimulating the growth of the levator ani and in suppressing elevated LH levels. In sharp contrast to testosterone, AC-262536 has weak androgenic effects, as measured by prostate and seminal vesicle weights. Thus, AC-262536 represents a novel class of selective androgen receptor modulators (SARMs) with beneficial anabolic effects.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... The DHT metabolite 5αandrostane-3β,17β-diol ( Figure 1) selectively activates ERβ. 8,15,17 Thus, DHT is potentially both androgenic and estrogenic. Interestingly, estrogen and testosterone depletion, induced via chemical castration in men undergoing prostate cancer treatment, is accompanied by a significant increase in plasma Aβ levels. ...
... Gonadectomized male 3xTg-AD mice exhibit increased Aβ pathology. 8,12,13,15 The lack of a significant effect after 4 months treatment may relate to the fact that Aβ pathology does not occur uniformly in brain, although samples of total brain homogenates are assayed. In addition, a possible effect on neuronal Aβ may be diluted by a lack of effect on Aβ associated with glial cells and blood vessels, which are also present in the assayed brain samples. ...
... 13,41 Studies indicate that increased neprilysin results in decreased soluble brain Aβ. 15,17,42 Additionally, in different mouse models of AD, amyloid reduction also reduces tau pathology and results in neuroprotection. 18,43 Thus, a reduction of Aβ potentially reduces tau pathology. ...
Article
Decreases of the sex steroids, testosterone and estrogen are associated with increased risk of Alzheimer's disease. Testosterone and estrogen supplementation improves cognitive deficits in animal models of Alzheimer's disease. Sex hormones play a role in the regulation of amyloid-β via induction of the amyloid-β degrading enzymes neprilysin and insulin-degrading enzyme. To mimic the effect of dihydrotestosterone (DHT), we administered a selective androgen receptor agonist, ACP-105, alone and in combination with the selective estrogen receptor β (ERβ) agonist AC-186 to male gonadectomized triple transgenic mice. We assessed long-term spatial memory in the Morris Water Maze, spontaneous locomotion and anxiety-like behavior in the open field and in the elevated plus maze. We found that ACP-105 given alone decreases anxiety-like behavior. Furthermore, when ACP-105 is administered in combination with AC-186 they increase the amyloid-β degrading enzymes neprilysin and insulin degrading enzyme and decrease amyloid-β levels in the brain as well as improve cognition. Interestingly, the androgen receptor level in the brain was increased by chronic treatment with the same combination treatment ACP-105 and AC-186, not seen with DHT or ACP-105 alone. Based on these results, the beneficial effect of the selective ERβ agonist as a potential therapeutic for Alzheimer's disease warrants further investigation.
... The ideal SARM would be orally available without stimulatory effects in prostate and skin while maintaining the beneficial effects of androgen treatment. Multiple SARMs have been described, but the precise mechanism responsible for their tissue-selective activity is unknown (Yin et al., 2003;Martinborough et al., 2007;Ostrowski et al., 2007;Page et al., 2008;Piu et al., 2008). It has been postulated that the selectivity is the result of altered cofactor recruitment. ...
... There are relatively few publications with correlated pharmacokinetics and pharmacodynamics of SARMs across a range of doses (for review, see Gao et al., 2006). The pharmacological activity has been described for several chemical series, but pharmacokinetic data have not been published (Hanada et al., 2003;Martinborough et al., 2007;Miner et al., 2007;Ostrowski et al., 2007;Diel et al., 2008;Piu et al., 2008). More extensive pharmacokinetic data have been published for the aryl propionamide analogs over a limited number of oral and intravenous doses (Kearbey et al., 2004;Chen et al., 2005;Kim et al., 2005). ...
... The plateau in prostate activity is unique among androgens and demonstrates a true partial agonist activity. Other SARMs have varying degrees of tissue-selective activity, but some increase prostate weight above eugonadal levels at high doses Ostrowski et al., 2007), whereas others have been evaluated over a very narrow dose range, making it difficult to assess the partial agonist activity (Diel et al., 2008;Page et al., 2008;Piu et al., 2008). Pharmacokinetic data from these studies have not been published, making it difficult to confirm that partial agonist activity is not an artifact of saturated compound exposure. ...
Article
Full-text available
Selective androgen receptor modulators (SARMs) are a new class of molecules in development to treat a variety of diseases. SARMs maintain the beneficial effects of androgens, including increased muscle mass and bone density, while having reduced activity on unwanted side effects. The mechanisms responsible for the tissue-selective activity of SARMs are not fully understood, and the pharmacokinetic (PK)/pharmacodynamic (PD) relationships are poorly described. Tissue-specific compound distribution potentially could be a mechanism responsible for apparent tissue selectivity. We examined the PK/PD relationship of a novel SARM, LGD-3303 [9-chloro-2-ethyl-1-methyl-3-(2,2,2-trifluoroethyl)-3H-pyrrolo[3,2-f]quinolin-7(6H)-one], in a castrated rat model of androgen deficiency. LGD-3303 has potent activity on levator ani muscle but is a partial agonist on the preputial gland and ventral prostate. LGD-3303 never stimulated ventral prostate above intact levels despite increasing plasma concentrations of compound. Tissue-selective activity was maintained when LGD-3303 was dosed orally or by continuous infusion, two routes of administration with markedly different time versus exposure profiles. Despite the greater muscle activity relative to prostate activity, local tissue concentrations of LGD-3303 were higher in the prostate than in the levator ani muscle. LGD-3303 has SARM properties that are independent of its pharmacokinetic profile, suggesting that the principle mechanism for tissue-selective activity is the result of altered molecular interactions at the level of the androgen receptor.
... Some adverse effects were observed in animal models, such as a reduction in luteinizing hormone level, but few side-effects are known for humans [76,77]. Various SARMs are currently in pre-clinical development, including AC-262356 [78], LGD-2226 [79], LGD-3303 [80], S-40503 [81], S-23 [82], S-1 [83], C-6 [84] and RAD140 [85] (34-41, Figure 7) [86]. Most of these agents are being tested for osteoporosis and wasting syndrome. ...
Article
Full-text available
Testosterone derivatives and related compounds (such as anabolic-androgenic steroids—AAS) are frequently misused by athletes (both professional and amateur) wishing to promote muscle development and strength or to cover AAS misuse. Even though these agents are vastly regarded as abusive material, they have important pharmacological activities that cannot be easily replaced by other drugs and have therapeutic potential in a range of conditions (e.g., wasting syndromes, severe burns, muscle and bone injuries, anemia, hereditary angioedema). Testosterone and related steroids have been in some countries treated as controlled substances, which may affect the availability of these agents for patients who need them for therapeutic reasons in a given country. Although these agents are currently regarded as rather older generation drugs and their use may lead to serious side-effects, they still have medicinal value as androgenic, anabolic, and even anti-androgenic agents. This review summarizes and revisits the medicinal use of compounds based on the structure and biological activity of testosterone, with examples of specific compounds. Additionally, some of the newer androgenic-anabolic compounds are discussed such as selective androgen receptor modulators, the efficacy/adverse-effect profiles of which have not been sufficiently established and which may pose a greater risk than conventional androgenic-anabolic agents.
... The compound stimulated the growth of the levator ani muscle and suppressed elevated LH levels. AC-262536 has weak androgenic effects compared with testosterone (Piu et al., 2008). ...
Article
Full-text available
Nuclear receptors are ligand-activated transcription factors and include the receptors for steroid hormones, lipophilic vitamins, sterols, and bile acids. These receptors serve as targets for development of myriad drugs that target a range of disorders. Classically defined ligands that bind to the ligand-binding domain of nuclear receptors, whether they are endogenous or synthetic, either activate receptor activity (agonists) or block activation (antagonists) and due to the ability to alter activity of the receptors are often termed receptor "modulators." The complex pharmacology of nuclear receptors has provided a class of ligands distinct from these simple modulators where ligands display agonist/partial agonist/antagonist function in a tissue or gene selective manner. This class of ligands is defined as selective modulators. Here, we review the development and pharmacology of a range of selective nuclear receptor modulators.
... Examples of androgen receptor modulators include finasteride and other 5 -reductase inhibitors, nilutamide, flutamide, bicalutamide, liarozole, AC-262536 and abiraterone acetate. In an experimental rat model it was shown that AC-262536 significantly improves anabolic parameters while suppressing elevated LH levels [80]. ...
Article
Endometriosis is so far considered as an incurable inflammatory disease. The ectopical implants of endometrial cells proliferate, increase in size and thereafter bleed following the menstrual cycle. The accumulated blood aggravates the situation by developing into cysts which, depending on the place, size and number, in most cases increase pain. Infertility in endometriosis is related either to mechanical distortion of the reproductive truck or to various endometriosis-induced factors including hormones, cytokines and chemokines. Except from the anti-inflammatory treatments and gonadotropin-releasing hormone agonists that have been used for a long time to relief from pain, new treatments are targeted against either hormonal-mediated cell growth via inhibition of the metabolic pathway of estrogens and androgens or vascularization or even implantation of the endometrial engraftment. Thus, the role of selective estrogen, androgen or progesterone receptor modulators, aromatase inhibitors, vascular endothelial growth factor receptor and extracellular matrix modulators is reviewed. This article also reviewed recent patents related to the field.
Article
AC-262536 is one of a number of selective androgen receptor modulators that are being developed by the pharmaceutical industry for treatment of a range of clinical conditions including androgen replacement therapy. Though not available therapeutically, selective androgen receptor modulators are widely available to purchase online as (illegal) supplement products. The growth and bone promoting effects, along with fewer associated negative side effects compared to anabolicandrogenic steroids, make these compounds a significant threat with regards to doping control in sport. The aim of this study was to investigate the metabolism of AC-262536 in the horse following in vitro incubation and oral administration to two Thoroughbred horses, in order to identify the most appropriate analytical targets for doping control laboratories. Urine, plasma and hair samples were collected and analysed for parent drug and metabolites. Liquid chromatography-high resolution mass spectrometry was used for in vitro metabolite identification and in urine and plasma samples. Nine phase I metabolites were identified in vitro; four of these were subsequently detected in urine and three in plasma, alongside the parent compound in both matrices. In both urine and plasma samples, the longest detection window was observed for an epimer of the parent compound, which is suggested as the best target for detection of AC-262536 administration. AC-262536 and metabolites were found to be primarily glucuronide conjugates in both urine and plasma. Liquid chromatography-tandem mass spectrometry analysis of post-administration hair samples indicated incorporation of parent AC-262536 into the hair following oral administration. No metabolites were detected in the hair.
Chapter
The effects that steroid hormones exert on gene expression via their nuclear receptors (NRs) must be tightly regulated, in particular because of their pleiotropic effects in many tissues. To that end, regulation of receptor activity takes place at multiple levels, which include ligand availability, epigenetic modifications of chromatin around tissue-specific target genes, expression levels of the receptor, and the presence or absence of other NRs in the same cell. One of the levels of transcriptional control is that of the NR coregulators, proteins that can interact with NRs and modulate their function. Coregulators can interact with multiple NRs and NRs can interact with multiple coregulators. As a consequence, coregulator expression in certain cell types may play the roles of hubs and bottleneck that offers gene target, cell type, or context specificity. Below we offer an overview of NR coregulator function, highlighting the best-described coregulators in the brain, as well as possibilities for the manipulation of NR–coregulator interactions for therapeutic or experimental purposes.
Article
Introduction: Male hypogonadism is characterized by inadequate production of Testosterone (T) (hypoandrogenism) and deficiencies in spermatogenesis. The main treatment of male hypogonadism is T replacement therapy (TRT), but for some of the patients, alternative drugs may be more suitable. Areas covered: The available literature of T and alternative treatments for male hypogonadism are discussed. Expert opinion: Transdermal application of T gels are the most commonly used route of T administration. Some oral T formulations are either associated with hepatic toxicity (i.e. methyltestosterone) or short half-lives that require multiple doses per day (i.e. oral testosterone undecanoate). Short acting, injectable T formulations are also available. If the patient prefers not to use daily drugs or short acting injectable formulations, depot formulations such as injectable testosterone undecanoate (TU) may be a good alternative. If the patient has hypogonadotropic hypogonadism and desires fertility or if he is adolescent, instead of TRT, gonadotropins can be started to stimulate testicular growth and spermatogenesis. In obese patients or for the patients having high risks for TRT, off label aromatase inhibitors (AI) and clomiphene citrate (CC), may be considered to stimulate LH, FSH and T levels. In patients with high prostate disease risk, selective androgen receptor modulators may be an alternative treatment but these latter treatments have not had high level evidence.
Article
Full-text available
The main focus of this review is to discuss the discoveries and developments of various therapies for prostate cancer. The AR has played an important role in prostate cancer growth and functions. This review discusses several groups of drugs that have sparingly good anti-cancer activities, as well as a similar structure and behaviour. A recent new-generation AR antagonist, Enzalutamide (MDV3100), has been approved for the treatment of advanced/metastatic prostate cancer. Nonsteroidal antiandrogens represent an important class of molecules acting as either antagonists or agonists. Recently, many therapeutic agents for prostate cancer that target the androgen receptor and reduce prostate tumour growth have been approved. The strong response to this new use of Enzalutamide provides a viable, less toxic alternative to chemotherapy. The current status of prostate cancer drugs are discussed here, but it is evident that considerably more work is needed for improvements in respect to efficacy, reduction of the side effects and treatment strategies.
Article
To circumvent antiandrogen resistance in prostate cancer, antiandrogens effective for both the androgen receptor (AR) and AR mutants are required. The AR antagonists in this study originate from previous findings, which showed that subtle differences in substitution pattern lead to a conformational change that alters the ligand activity, rendering an agonist to an antagonist. We have identified small yet potent tropanol-based ligands possessing significant antiandrogenic activity with both wild-type AR and the two most common AR ligand binding domain (LBD) mutants.
Article
Age-related androgen depletion is known to be a risk factor for various diseases, such as osteoporosis and sarcopenia. Furthermore, recent studies have demonstrated that age-related androgen depletion results in accumulation of β-amyloid protein and thereby acts as a risk factor for the development of Alzheimer's disease. Supplemental androgen therapy has been shown to be efficacious in treating osteoporosis and sarcopenia. In addition, studies in animals have demonstrated that androgens can play a protective role against Alzheimer's disease. However, androgen therapy is not used routinely for these indications, because of side effects. Selective androgen receptor modulators (SARMs) are a new class of compounds. SARMs maintain the beneficial effects of androgens on bone and muscle while reducing unwanted side effects. NEP28 is a new SARM exhibiting high selectivity for androgen receptor. To investigate the pharmacological effects of NEP28, we compared the effects on muscle, prostate, and brain with mice that were androgen depleted by orchidectomy and then treated with either placebo, NEP28, dihydrotestosterone, or methyltestosterone. We demonstrated that NEP28 showed tissue-selective effect equivalent to or higher than existing SARMs. In addition, the administration of NEP28 increased the activity of neprilysin, a known Aβ-degrading enzyme. These results indicate that SARM is efficacious for the treatment of not only osteoporosis and sarcopenia, but also Alzheimer's disease.
Article
Background: Selective androgen receptor modulators (SARMs) represent a new class of pharmaceuticals that may find wide clinical use. However, selectivity is not understood at the molecular level, which has made the discovery and preclinical evaluation of SARMs difficult. Objectives: We review the current state of SARM discovery and preclinical evaluation, as well as our current understanding of the molecular mechanisms controlling AR selectivity. We then discuss how increasing our molecular knowledge of AR selectivity will help create better discovery and evaluation methods and lead to a wider array of safer SARMs. Conclusions: The SARM field has advanced rapidly, but without a solid foundation of molecular knowledge to inform discovery and preclinical evaluation methods. The field has also taken a narrow view of selectivity, disregarding many androgen-responsive tissues, which could lead to unforeseen and detrimental side effects with chronic administration of SARMs. An investment in basic research could accelerate the discovery of a new generation of more selective and safer SARMs that could be used to treat an expanded range of clinical conditions.
Article
Fatty liver, which often accompanies obesity and type 2 diabetes, frequently leads to a much more debilitating hepatic disease including non-alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma. Current pharmacological therapies lack conclusive efficacy and thus treatment options are limited. Novel therapeutics that either suppress hepatic lipogenesis and/or hepatic inflammation may be useful. Here, we describe the development of the first selective synthetic LXR inverse agonist (SR9238) and we demonstrate that this compound effectively suppresses hepatic lipogenesis, inflammation and hepatic lipid accumulation in a mouse model of nonalcoholic hepatosteatosis. SR9238 display high potency for both LXRα and LXRβ (40-200 nM IC50) and was designed to display liver specificity so as to avoid potential side effects due to suppression of LXR in the periphery. Unexpectedly, treatment of diet induced obese mice with SR9238 suppressed plasma cholesterol levels. These data indicate that liver selective LXR inverse agonists may hold utility in the treatment of liver disease.
Article
Introduction: The development and potential clinical use of tissue-selective androgen receptor modulators (SARMs) have advanced tremendously over the past few years. A key aspect of SARMs is the ability to clearly differentiate between the anabolic and androgenic activities. SARMs provide therapeutic opportunities in a variety of diseases, including muscle wasting associated with burns, cancer, end-stage renal disease, osteoporosis, frailty and hypogonadism. Areas covered: The aim of the present paper is to summarize the current standing of research and development of SARMs and plausible molecular mechanisms underlying the potential for selective modulation of androgen receptor (AR) by different ligands. This paper also provides an update on SARM discovery paradigms for preclinical evaluations. Expert opinion: Promising results have been obtained in preclinical investigations and initial clinical trials, but long-term safety, tolerability and efficacy studies in patients are still necessary. Preclinically, improving knowledge of tissue selectivity at the molecular level, developing AR selectivity transcription profile, exploring in vitro/in vivo correlation, along with expanding selectivity evaluation among more androgen responsive tissues would accelerate the discovery of a new generation of more selective and safer clinical candidates, minimize false leads and hasten development of effective approaches for an expanded range of clinical conditions.
Article
Full-text available
While tissue specific effects of selective androgen receptor modulators (SARMs) outside the brain have been reported, little is known about brain specific SARMs. Here we show that SARMs upregulate androgen receptor levels in brain following castration and antagonize impairments in hippocampus-dependent novel location recognition and spatial memory retention in apoE4 female mice. Together with the reduced androgen levels in aged men and women and the beneficial effects of androgens on brain function and pathology in Alzheimer's disease-related models, these data support the therapeutic potential of SARMs for age-related cognitive decline and Alzheimer's disease.
Article
Selective androgen receptor modulators (SARMs) are androgens with tissue-selective activity. SARMs that have anabolic activity on muscle while having minimal stimulatory activity on prostate are classified as SARM agonists. They can be used to prevent the loss of lean body mass that is associated with cancer, immunodeficiency, renal disease and aging. They may also have anabolic activity on bone; thus, unlike estrogens, they may reverse the loss of bone strength associated with aging or hypogonadism. Our in-house effort on SARM program discovers a nonsteroidal androgen receptor ligand with a unique imidazolopyrazole moiety in its structure. In vitro, this compound is a weak androgen receptor binder and a weak androgen agonist. Despite this, in orchidectomized mature rats it is an effective SARM agonist, with an ED(50) on levator ani muscle of 3.3mg/kg and an ED(50) on ventral prostate of >30mg/kg. It has its maximal effect on muscle at the dose of 10mg/kg. In addition, this compound has mixed agonistic and antagonistic activities on prostate, reducing the weight of that tissue in intact rats by 22% at 10mg/kg. The compound does not have significant effect on gonadotropin levels or testosterone levels in both orchidectomized and intact male rats. It does not have notable progestin, estrogen or glucocorticoid agonistic or antagonistic activity in rats. In a female sexual behavior model, it improves the sexual desire of ovariectomized female rats for sexually mature intact males over nonsexually ovariectomized females. Overall, the imidazolopyrazole is a potent prostate-sparing candidate for development as a SARM agonist with an appropriate pharmacological profile for clinical benefit in muscle-wasting conditions and female sexual function disorders.
Article
Background: The therapeutic approach to the neoplastic patient with cachexia is very frustrating for the physician. Indeed, we can say that a cure for cancer cachexia does not exist. Numerous therapeutic strategies have been tested in the last few decades with discouraging or at least conflicting results. Methods: Drugs patented for the treatment of cancer cachexia are evaluated and discussed. Results: New drugs such as ghrelin splice variant, small-molecule melanocortin-4 receptor antagonists and selective androgen receptor modulators have been discovered, evaluated with promising results, and patented. It is expected that soon they will be tested in humans through adequate clinical trials in experimental studies. Other compounds such as retinoid X receptor agonists, the inhibitor of LPS-induced TNF-α factor (LIPAF) protein, novel inhibitors of TNF-α production or release and tumour cytotoxic factor II need to be tested first in experimental models of cancer cachexia. Conclusion: With the recent discovery of new, effective drugs, it seems that a new scenario is opening up in the therapy of cancer cachexia.
Article
We report here the design, preparation, and systematic evaluation of a novel cycloalkane[d]isoxazole pharmacophoric fragment-containing androgen receptor (AR) modulators. Cycloalkane[d]isoxazoles form new core structures that interact with the hydrophobic region of the AR ligand-binding domain. To systematize and rationalize the structure-activity relationship of the new fragment, we used molecular modeling to design a molecular library containing over 40 cycloalkane[d]isoxazole derivatives. The most potent compound, 4-(3a,4,5,6,7,7a-hexahydrobenzo[d]isoxazol-3-yl)-2-(trifluoromethyl)benzonitrile (6a), exhibits antiandrogenic activity significantly greater than that of the most widely used antiandrogenic prostate cancer drugs bicalutamide (1) and hydroxyflutamide (2) in reporter gene assays measuring the transcriptional activity of AR (decreasing approximately 90% of the total AR activity) and in competitive AR ligand-binding assays (showing over four times higher potency to inhibit radioligand binding in comparison to bicalutamide). Notably, 6a maintains its antiandrogenic activity with AR mutants W741L and T877A commonly observed and activated by bicalutamide and hydroxyflutamide, respectively, in prostate cancer patients.
Article
In both men and women, age-related loss of sex steroid hormones has been linked to an increased risk for Alzheimer's disease (AD). The primary female hormone estrogen, and the primary male hormone testosterone have numerous protective effects in the brain relevant to the prevention of AD such as the promotion of neuron viability, reduction of β- amyloid accumulation and alleviation of tau hyperphosphorylation. Therefore it has been hypothesized that the precipitous loss of these hormones either through menopause or normal aging, can increase susceptibility to AD pathogenesis. This review will discuss the basic science research and epidemiological evidence largely supporting this hypothesis, as well as the estrogen-based hormone therapy clinical findings that have recently shed doubt on this theory. The complications associated with estrogen-based hormone therapy such as the inclusion of a progestogen, hormone responsiveness with age, and natural vs. synthetic hormones will be discussed. Further, we will outline the cancer risks facing both estrogen and testosterone-based hormone therapy. Most importantly, this review will discuss the present and future strategies to translate the neuroprotective properties of sex steroid hormones into safe and efficacious treatments for AD. One of the most promising translational tools thus far may be the development of selective estrogen and androgen receptor modulators. However, additional research is needed to optimize these and other translational tools towards the successful use of hormone therapies in both men and women to delay, prevent, and or treat AD.
Article
The androgens testosterone and dihydrotestosterone play an essential role in the development and maintenance of primary and secondary male characteristics. Androgens bind to a specific androgen receptor (AR), a ligand-dependent transcription factor which controls the expression of a large number of downstream target genes. The AR is an essential player in early and late prostate cancer, and may also be involved in some forms of breast cancer. It also represents a drug target for the treatment of hypogonadism. Recent studies furthermore indicate that targeting the AR in pathologies such as frailty syndrome, cachexia or polycystic ovary syndrome may have clinical benefit. Numerous AR ligands with very different pharmacological properties have been identified in the last 40 years and helped to treat several of these diseases. However, progress still needs to be made in order to find compounds with an improved profile with regard to efficacy, differentiation and side-effects. This will only be achieved through a better understanding of the mechanisms involved in normal and aberrant AR signaling.
Article
Herein we describe the discovery of ACP-105 (1), a novel and potent nonsteroidal selective androgen receptor modulator (SARM) with partial agonist activity relative to the natural androgen testosterone. Compound 1 was developed from a series of compounds found in a HTS screen using the receptor selection and amplification technology (R-SAT). In vivo, 1 improved anabolic parameters in a 2-week chronic study in castrated male rats. In addition to compound 1, a number of potent antiandrogens were discovered from the same series of compounds whereof one compound, 13, had antagonist activity at the AR T877A mutant involved in prostate cancer.
Article
We identified a novel synthetic steroid, S42, as a promising candidate of selective androgen receptor (AR) modulator. Results of the whole-cell binding assay using COS-7 cells exogenously expressing various steroid receptors indicated that S42 specifically binds to AR and progesterone receptor. When orchiectomized Sprague Dawley rats were administered with S42 for 3 wk, the muscle weight of the levator ani was increased as markedly as that induced by 5alpha-dihydrotestosterone (DHT), but the weight of the prostate was not elevated at any doses in contrast to DHT. The plasma concentrations of gonadotropin and adiponectin, those down-regulated by DHT, were unaffected by S42. In addition, although the plasma triglyceride level was unaffected by DHT, it was significantly reduced by S42. This effect of S42 was associated with suppression of the SRBP-1c-mediated lipogenic and insulin-desensitizing pathway in the liver and visceral fat. Taken together, S42 works as an AR agonist in muscle and as an AR antagonist in the prostate, pituitary gland, and liver, accompanying beneficial potentials on lipid metabolism.
Article
The androgens testosterone and its more potent tissue metabolite 5-alpha-dihydrotesterone regulate diverse physiological process involving both reproductive and non-reproductive functions. Most of the signaling effects of androgens are mediated through the androgen receptor (AR), a member of the nuclear receptor superfamily of transcription factors. The AR has been a target for drug development focused on the treatment of pathological conditions arising from abnormal androgen levels or altered target tissue responsiveness, the improvement of physical performance and the regulation of male fertility. The primary focus for drug design has been the synthesis of chemicals to regulate the transcriptional activity of AR based on the structural and functional properties of the ligands, with a recent preference for selectively anabolic non-steroidals. A new class of molecules targeting androgen receptors called selective androgen receptor modulators is being developed, analogous to the clinically successful and at present marketed selective estrogen receptor modulators. This article highlights and reviews research advances in this field that have been published in patent literature since 2003. The structural diversity of selective androgen receptor modulators has dramatically increased. Several compounds have emerged as clinical and preclinical candidates.
Article
Nuclear receptors (NR) are ligand-activated transcription factors that regulate the activation of a variety of important target genes. There are 48 genes that encode NRs in the human genome, and these receptors now represent one of the most important targets for therapeutic drug development. Successful identification of selective NR modulators has transformed the NR drug discovery strategy from the designing of synthetic compounds that mimic the full function of cognate ligands to developing compounds that selectively modulate the functional activity of an NR in a manner that is distinct from the cognate ligands. Current efforts regarding NR drug development continue to focus on improving the function and tissue selectivity of drug candidates to reduce undesirable side effects. This review focuses on modulators of the glucocorticoid receptor (GR), androgen receptor (AR), and pregnane X receptor (PXR).
Article
Full-text available
Functional analysis of androgen receptor (AR) gene mutations isolated from prostate cancer has led to the identification of residues that play important roles in the structure and function of the receptor. Here we report the characteristics of a novel AR mutation A748T located in helix 5 of the ligand-binding domain, which was identified in metastatic prostate cancer. Despite a normal hormone-binding affinity, A748T causes hormone concentration-dependent defects in nuclear accumulation and transcriptional activation. Moreover, when equivalent amounts of DNA are transfected, the mutant is expressed at much lower levels than the wild-type AR (ARWT). Treatment with geldanamycin to disrupt receptor-heat shock protein complexes rapidly decreases the levels of ARWT but not A748T, suggesting that the lower expression and rapid degradation rate of A748T is due to weaker interactions with heat shock proteins. Further analysis revealed that hormone dissociates from A748T five times faster than from ARWT. Loss of the ability to form stable amino/carboxyl-terminal interactions causes accelerated dissociation rates in some AR mutants. However, A748T exhibits normal amino/carboxyl-terminal interactions at high hormone concentrations, suggesting that the mutation alters interactions with ligand. Consistent with this conclusion, our structural model predicts that A748T disrupts crucial contact points with ligand, thereby altering the conformation of the ligand-binding domain.
Article
Full-text available
A novel nonsteroidal androgen receptor (AR) binder, S-40503, was successfully generated in order to develop selective androgen receptor modulators (SARMs). We evaluated the binding specificity for nuclear receptors (NRs) and osteoanabolic activities of S-40503 in comparison with a natural nonaromatizable steroid, 5alpha-dihydrotestosterone (DHT). The compound preferentially bound to AR with nanomolar affinity among NRs. When S-40503 was administrated into orchiectomized (ORX) rats for 4 weeks, bone mineral density (BMD) of femur and muscle weight of levator ani were increased as markedly as DHT, but prostate weight was not elevated over the normal at any doses tested. In contrast, DHT administration caused about 1.5-fold increase in prostate weight. The reduced virilizing activity was clearly evident from the result that 4-week treatment of normal rats with S-40503 showed no enlargement of prostate. To confirm the bone anabolic effect, S-40503 was given to ovariectomized (OVX) rats for 2 months. The compound significantly increased the BMD and biomechanical strength of femoral cortical bone, whereas estrogen, anti-bone resorptive hormone, did not. The increase in periosteal mineral apposition rate (MAR) of the femur revealed direct bone formation activity of S-40503. It was unlikely that the osteoanabolic effect of the compound was attribute to the enhancement of muscle mass, because immobilized ORX rats treated with S-40503 showed a marked increase in BMD of tibial cortical bone without any actions on the surrounding muscle tissue. Collectively, our novel compound served as a prototype for SARMs, which had unique tissue selectivity with high potency for bone formation and lower impact upon sex accessory tissues.
Article
Full-text available
Although some reports suggest that testosterone-replacement therapy may provide benefits for aging men, considerable controversy remains regarding indications for its use. Neither large-scale nor long-term studies have been initiated, in part because of theoretical concern regarding the risks associated with testosterone therapy, especially the possible stimulation of prostate cancer. This article discusses what is known (and not known) about the risks of testosterone-replacement therapy and provides recommendations for monitoring men who are receiving testosterone.
Article
Full-text available
The present study aimed to identify selective androgen receptor modulators (SARMs) with in vivo pharmacological activity. We examined the in vitro and in vivo pharmacological activity of four chiral, nonsteroidal SARMs synthesized in our laboratories. In the in vitro assays, these compounds demonstrated moderate to high androgen receptor (AR) binding affinity, with K(i) values ranging from 4 to 37 nM, and three of the compounds efficaciously stimulated AR-mediated reporter gene expression. The compounds were then administered subcutaneously to castrated rats to appraise their in vivo pharmacological activity. Androgenic activity was evaluated by the ability of these compounds to maintain the weights of prostate and seminal vesicle, whereas levator ani muscle weight was used as a measure of anabolic activity. The maximal response (E(max)) and dose for half-maximal effect (ED(50)) were determined for each compound and compared with that observed for testosterone propionate (TP). Compounds S-1 and S-4 demonstrated in vivo androgenic and anabolic activity, whereas compounds S-2 and S-3 did not. The activities of S-1 and S-4 were tissue-selective in that both compounds stimulated the anabolic organs more than the androgenic organs. These two compounds were less potent and efficacious than TP in androgenic activity, but their anabolic activity was similar to or greater than that of TP. Neither S-1 nor S-4 caused significant luteinizing hormone or follicle stimulating hormone suppression at doses near the ED(50) value. Thus, compounds S-1 and S-4 were identified as SARMs with potent and tissue-selective in vivo pharmacological activity, and represent the first members of a new class of SARMs with selective anabolic effects.
Article
Full-text available
The present study characterized the in vitro androgen receptor (AR) binding affinity, in vitro and in vivo pharmacological activity, and in vivo pharmacokinetics and metabolism of acetothiolutamide, a nonsteroidal AR ligand. AR binding was determined by a competitive binding assay. In vitro AR agonist activity was examined by a cotransfection assay. Acetothiolutamide displayed high AR binding affinity (K(i) = 4.9 +/- 0.2 nM) and full agonist activity in the in vitro studies. Next, the androgenic, anabolic, and antiandrogenic activity of acetothiolutamide was evaluated in a castrated immature rat model. In this animal model, acetothiolutamide exhibited an overall negligible androgenic effect, but a statistically significant anabolic effect at high subcutaneous doses. Also, acetothiolutamide demonstrated a noticeable antiandrogenic effect in castrated rats supplemented with testosterone propionate. To understand the causes for the observed disparity between in vitro and in vivo activities, pharmacokinetics and metabolism of acetothiolutamide were studied in male Sprague-Dawley rats. Acetothiolutamide was rapidly cleared from rat plasma (clearance of about 45 ml/min/kg) in a concentration-independent manner after i.v. dosing. Acetothiolutamide was completely absorbed after subcutaneous administration, but not bioavailable after oral dose. In the metabolism study, the unchanged molecule and its metabolites in urine and fecal samples were detected by high-performance liquid chromatography-mass spectrometry. The structures of major metabolites were elucidated with liquid chromatography-tandem mass spectrometry. After i.v. administration, acetothiolutamide was excreted in urine and feces as unchanged drug and a variety of metabolites. Oxidation, hydrolysis, and sulfate conjugation of phase I metabolites were the major metabolic pathways of acetothiolutamide in rats. Overall, the high plasma clearance of acetothiolutamide, due to its extensive hepatic metabolism, likely contributed to its lack of androgenic activity in vivo.
Article
Full-text available
To decipher the clues of genotype-phenotype mapping in androgen insensitivity syndromes (AIS), we integrated clinical, molecular, and structural data in an investigation into the characteristics of androgen receptor (AR) ligand binding and activation. We looked for residues substituted in AIS that are conserved among the different AR species but that diverge in the other steroid receptors, thus suggesting a role in androgen binding specificity. Of the residues fitting these characteristics, we focused on the glycine at position 743, for which natural substitutions (glutamic acid and valine) have been associated with different androgen resistance phenotypes. The consequences of both substitutions were evaluated along with the minimal glycine to alanine mutation. The gradual impairment of binding and trans-activation efficiencies in AR mutants ranging from alanine to valine and subsequently glutamic acid were highlighted by in vitro experiments. Structural analyses showed the consequences of these substitutions at the atomic level and suggested a difference in local organization among the nuclear receptor superfamily. Overall, this integrative approach provides a useful tool for further investigations into the AR structure-function relationship in AIS.
Article
Full-text available
A novel, highly potent, orally active, nonsteroidal tissue selective androgen receptor (AR) modulator (BMS-564929) has been identified, and this compound has been advanced to clinical trials for the treatment of age-related functional decline. BMS-564929 is a subnanomolar AR agonist in vitro, is highly selective for the AR vs. other steroid hormone receptors, and exhibits no significant interactions with SHBG or aromatase. Dose response studies in castrated male rats show that BMS-564929 is substantially more potent than testosterone (T) in stimulating the growth of the levator ani muscle, and unlike T, highly selective for muscle vs. prostate. Key differences in the binding interactions of BMS-564929 with the AR relative to the native hormones were revealed through x-ray crystallography, including several unique contacts located in specific helices of the ligand binding domain important for coregulatory protein recruitment. Results from additional pharmacological studies effectively exclude alternative mechanistic contributions to the observed tissue selectivity of this unique, orally active androgen. Because concerns regarding the potential hyperstimulatory effects on prostate and an inconvenient route of administration are major drawbacks that limit the clinical use of T, the potent oral activity and tissue selectivity exhibited by BMS-564929 are expected to yield a clinical profile that provides the demonstrated beneficial effects of T in muscle and other tissues with a more favorable safety window.
Article
Full-text available
A number of conditions, including osteoporosis, frailty, and sexual dysfunction in both men and women have been improved using androgens. However, androgens are not widely used for these indications because of the side effects associated with these drugs. We describe an androgen receptor (AR) ligand that maintains expected anabolic activities with substantially diminished activity in the prostate. LGD2226 is a nonsteroidal, nonaromatizable, highly selective ligand for the AR, exhibiting virtually no affinity for the other intracellular receptors. We determined that AR bound to LGD2226 exhibits a unique pattern of protein-protein interactions compared with testosterone, fluoxymesterone (an orally available steroidal androgen), and other steroids, suggesting that LGD2226 alters the conformation of the ligand-binding domain. We demonstrated that LGD2226 is fully active in cell-based models of bone and muscle. LGD2226 exhibited anabolic activity on muscle and bone with reduced impact on prostate growth in rodent models. Biomechanical testing of bones from animals treated with LGD2226 showed strong enhancement of bone strength above sham levels. LGD2226 was also efficacious in a sex-behavior model in male rats measuring mounts, intromissions, ejaculations, and copulation efficiency. These results with an orally available, nonaromatizable androgen demonstrate the important role of the AR and androgens in mediating a number of beneficial effects in bone, muscle, and sexual function independent from the conversion of androgens into estrogenic ligands. Taken together, these results suggest that orally active, nonsteroidal selective androgen receptor modulators may be useful therapeutics for enhancing muscle, bone, and sexual function.
Article
Nonsteroidal androgens have not been reported. During studies to identify affinity ligands for the androgen receptor in our laboratory, we synthesized several electrophilic nonsteroidal ligands for the androgen receptor and examined their receptor binding affinity and ability to stimulate receptor-mediated transcriptional activation. We found that three of these ligands (1) bound the androgen receptor with affinity similar to that of dihydrotestosterone (the endogenous ligand) and (2) mimicked the effects of dihydrotestosterone on receptor-mediated transcriptional activation (i.e., they were receptor agonists). These studies demonstrate that nonsteroidal ligands can be structurally modified to produce agonist activity. These ligands thus represent the first members of a novel class of androgens with potential therapeutic applications in male fertility and hormone replacement therapy.
Article
'Andropause', like menopause, has received significant attention in recent years. It results in a variety of symptoms experienced by the elderly. Many of these symptoms are nonspecific and vague. For this reason, many authors have questioned the value of androgen replacement in this population. Also in dispute is the normal cutoff level for testosterone beyond which therapy should be initiated, and whether to measure free or total testosterone. Testosterone levels decline with age, with the lowest level seen in men older than 70 years. This age-related decline in testosterone levels is both central (pituitary) and peripheral (testes) in origin. With aging, there is also a loss of circadian rhythm of testosterone secretion and a rise in sex hormone binding globulin (SHBG) levels. Total testosterone level is the best screening test for patients with suspected hypogonadism. If the total testosterone concentration is low, free testosterone levels should be obtained. Prostate cancer remains an absolute contraindication to androgen therapy. Testosterone replacement results in an improvement in muscle strength and bone mineral density. Similar effects are observed on the haematopoietic system. Data on cognition and lipoprotein profiles are conflicting. Androgen therapy can result in polycythemia and sleep apnoea. These adverse effects can be deleterious in men with compromised cardiac reserve. We recommend that elderly men with symptoms of hypogonadism and a total testosterone level <300 ng/dl should be started on testosterone replacement. This review discusses the pros and cons of testosterone replacement in hypogonadal elderly men and attempts to answer some of the unanswered questions. Furthermore, emphasis is made on the regular follow-up of these patients to prevent the development of therapy-related complications.
Article
Cytokine receptors have different signaling requirements which ultimately lead to various physiological responses. In an effort to precisely characterize the molecular determinants involved in the proliferative response mediated by cytokines, we examine dose-dependent proliferation of the betac (GM-CSF, IL-3, IL-5) and homodimeric (G-CSF, TPO) cytokine receptors. Here we report that all cytokine receptors tested activate mostly STAT3 and STAT5. While STAT3 had a positive effect on betac cytokine receptor dependent proliferation, STAT5 was strongly inhibitory. Similarly, G-CSF and TPO lead to activation of STAT3 and STAT5 but, unlike the betac cytokine receptors, both stimulated cellular growth. On the other hand, Ras activation was necessary for all receptor mediated proliferation with the exception of G-CSF R. Truncated mutants of the receptors intracellular domains were used to delineate the functional domains involved in JAK/STAT and Ras activation linked to cellular growth. For instance, we revealed a critical role for the specific alpha subunit of the betac receptors in triggering receptor activation, STAT3 stimulation and proliferation, while Ras activation originates from the distal intracellular portion of the betac subunit. Finally, we showed that proximal STAT activation is the triggering event of G-CSF and TPO receptor function.
Article
The role of androgen treatment in women remains controversial. The proposed “Female Androgen Insufficiency Syndrome” (Fertility and Sterility, April 2002) describes a number of non-specific symptoms including unexplained fatigue, decreased well being/dysphoric mood and/or blunted motivation and diminished sexual function. An estimated 40% of women experience sexual dysfunction, highlighting the need for ongoing research into this field in order to fully define the possible contribution of androgen insufficiency. The increasing availability of products, such as dehydroepiandrosterone (DHEA) supplements also points to the need for controlled studies to assess the safety of these and other preparations.
Article
Several epidemiological studies have demonstrated a gradual decrease of serum testosterone with aging in men. A considerable number of men will experience hypogonadal androgen levels, defined by the normal range for young men. Thus, in addition to the long-standing use of androgen replacement therapy in the classical forms of primary and secondary hypogonadism, age-associated testosterone deficiency has led to considerable developments in application modes for testosterone. Since oral preparations of testosterone are ineffective, due to the first-pass effect of the liver, or, in case of 17 alpha-alkylation, cause hepatotoxicity, intramuscular injection of long-acting esters, such as testosterone enanthate, have been the mainstay of testosterone therapy. However, the large fluctuations of serum testosterone levels cause unsatisfactory shifts of mood and sexual function in some men; combined with the frequent injections, this delivery mode is thus far from being ideal. In contrast, the transdermal testosterone patches are characterized by favorable pharmacokinetic behavior and have proven to be an effective mode of delivery. Safety data over 10 years indicate no negative effect on the prostate. Nevertheless, the scrotal testosterone patch system is hampered by the application site, which is not easily accepted by many subjects; the non-scrotal patch has a high rate of skin irritations. In view of the drawbacks of the currently available preparations, the most recent developments in testosterone supplementation appear to be highly promising agents. Androgen, which has been available in the United States since mid-2000, will be introduced this year in most European markets as Testogel, a hydroalcoholic gel containing 1% testosterone. Doses of 50-100 mg gel applied once daily on the skin deliver sufficient amounts of testosterone to restore normal hormonal values and to correct the signs and symptoms of hypogonadism. The gel has shown to be very effective and successful in American patients, who have benefited from its availability for almost 3 years. Furthermore, in phase II and III clinical studies, the intramuscular injection of 1000 mg testosterone undecanoate every 12-15 weeks has led to extremely stable serum testosterone levels for a prolonged period of time and has resulted in excellent efficacy. It is very likely in the future that these products will be the mainstay of testosterone supplementation. Whereas the indication for testosterone substitution for men with classical forms of hypogonadism is unequivocal, the use of testosterone in men with age-associated hypogonadism is less uniformly accepted. Yet, the few studies addressing this question indicate that men with testosterone serum levels below the lower normal limit for young adult men and with lack of energy, libido, depressed mood and osteoporosis may benefit from testosterone supplementation. However, it should be kept in mind that the experience documented in studies is limited. Nevertheless, serious side-effects, especially in regard to the prostate, did not occur, with the longest study extending over 3 years.
Article
Optimal testosterone replacement therapy remains a considerable challenge for the estimated five out of 1000 men in the general community with androgen deficiency. Oral delivery is not possible due to rapid first pass metabolism and short half-life. Testosterone derivatives have been developed to enhance intrinsic androgenic potency, prolong duration of action, or improve oral bioavailability of synthetic androgens. Structural modification of testosterone include 17 beta-esterification, 17 alpha-alkylation, 1-methylation, addition of a 19-normethyl group, and 7 alpha-methylation. Currently, oral (testosterone undecanoate), transcutaneous (Andropatch, Virormone, Testoderm (ALZA Corp), Testogel), sublingual (testosterone cyclodextrin), intramuscular (Sustanon, Primoteston Depot), and fused crystalline testosterone pellet preparations are available for clinical use. Transbuccal testosterone systems have also been developed for clinical use and require twice daily application. Suspensions of biodegradable microspheres consisting of a polyglycolide-lactide matrix laden with testosterone can deliver stable, physiological levels of testosterone for 2 to 3 months. Micronized testosterone has low oral bioavailability requiring high daily doses. 7 alpha-Methyl 19-nortestosterone, a potent, synthetic androgen free of hepatotoxicity, has tissue-specific selectivity, being susceptible to aromatization but not 5 alpha-reduction, thereby potentially avoiding intraprostatic androgen amplification.
Article
In this review selected toxicological problems related to testosterone therapy in hypogonadal men are discussed. Applying "classical" pharmacological/toxicological findings (e.g. animal studies on short- and long-term toxicity) to clinical situations is not very helpful. Molecular biological knowledge and especially evaluation of epidemiological studies, as well as intervention studies, on testosterone therapy in hypogonadal men are more useful. Potential risks include overdosage for lifestyle reasons, e.g. excessive muscle building and reduction of visceral obesity, when erythrocytosis occurs concomitantly. Modern galenic formulations of testosterone administration (e.g. transdermal gel, suitable testosterone esters for intramuscular application and newer oral preparations) avoid supraphysiological serum concentrations, therefore significantly reducing the toxicological risk. A hypothetical model of the toxicological risks of testosterone therapy is given that is based on the influence of testosterone metabolism (aromatization vs. reduction) of the respective parameter/target chosen. Finally, the great influence of polymorphisms of the androgen receptor on the assessment of toxicological risk and on the individualization of androgen therapy is shown. Already existing national, continental and international guidelines or recommendations for the testosterone therapy should be harmonized.
Article
Serum testosterone levels peak in early adulthood in men and fall progressively with age. Since sex hormone binding globulin increases with age, the unbound forms of testosterone (free and bioavailable testosterone) fall more steeply than total testosterone levels. Serum testosterone levels below the normal range for young healthy adult males provide chemical evidence of androgen deficiency independent of the age of the patient. When accompanied by signs or symptoms that are compatible with androgen deficiency, treatment with testosterone should be considered in older men without evidence of prostate or breast cancer. While such therapy for younger hypogonadal men has shown benefit on libido, mood, muscle mass, muscle strength, bone mineral density and haematocrit, similar benefits in older men have not been as adequately assessed. While there is no convincing evidence that testosterone treatment in older men will increase the risk of cardiovascular or prostate cancer, long-term, well-controlled studies are lacking and needed. Treatment options for older men include injectable, transdermal and transbuccal testosterone preparations.
Article
The activity of retinoid receptors activity can be regulated by various extracellular stimuli. In an effort to understand the molecular basis for this phenomenon, the role of beta-arrestins was investigated. Beta-Arrestins constitute a class of proteins involved in the internalization of agonist-activated receptors. They have also been linked to MAPK activation suggesting a direct involvement in signaling cascades. Here, we report that beta-arrestin 2 stimulates the transcriptional activation of the retinoid RAR and RXR receptors. Of all the retinoid receptors, the RAR beta2 subtype showed the strongest sensitivity to beta-arrestin 2 action. Interestingly, this event requires the presence of the MAP kinase ERK2, but not that of JNK or P38. Site-directed mutagenesis showed that Ser 22 and Leu 217 are critical residues of the RAR beta2 receptor through which beta-arrestin 2 effects are mediated. More importantly, we demonstrate that the induction of PC12 growth inhibition by Nerve Growth Factor is indeed dependent upon RAR beta2 transcriptional activation in a beta-arrestin 2- and ERK2-dependent manner.
Article
Drugs targeting retinoid receptors have been developed to treat a variety of therapeutic indications, but their success has been limited in part due to lack of selectivity. A novel functional cell-based assay R-SATtrade mark was employed to screen a small molecule chemical library and identify a variety of novel RAR agonists with various subtype selectivities, including RARbeta/gamma and RARgamma selective agonists. A novel class of synthetic compounds that distinguishes between the different RARbeta isoforms is described. This pharmacophore displays anti-proliferative activity and induces differentiation in a neuronal cell line, consistent with a classical retinoid mechanism of action while providing unique subtype selectivity. These novel subtype selective RAR agonists could serve as powerful tools to probe into subtype and isoform-specific retinoid function.
Article
Modulation of the androgen receptor has the potential to be an effective treatment for hypogonadism, andropause, and associated conditions such as sarcopenia, osteoporosis, benign prostatic hyperplasia, and sexual dysfunction. Side effects associated with classical anabolic steroid treatments have driven the quest for drugs that demonstrate improved therapeutic profiles. Novel, non-steroidal compounds that show tissue selective activity and improved pharmacokinetic properties have been developed. This review provides an overview of current advances in the development of selective androgen receptor modulators (SARMs).
Article
Chemical genomics is a drug discovery strategy that relies heavily on high-throughput screening (HTS) and therefore benefits from functional assay platforms that allow HTS against all relevant genomic targets. Receptor Selection and Amplification Technology (R-SAT) is a cell-based, high-throughput functional assay where the receptor stimulus is translated into a measurable cellular response through an extensive signaling cascade occurring over several days. The large biological and chronological separation of stimulus from response provides numerous opportunities for enabling assays and increasing assay sensitivity. Here we review strategies for building homogeneous assay platforms across large gene families by redirecting and/or amplifying signal transduction pathways.
Article
To review the historical origins and current evidence for the belief that testosterone (T) causes prostate cancer (pCA) growth. Review of the historical literature regarding T administration and pCA, as well as more recent studies investigating the relationship of T and pCA. In 1941 Huggins and Hodges reported that marked reductions in T by castration or estrogen treatment caused metastatic pCA to regress, and administration of exogenous T caused pCA to grow. Remarkably, this latter conclusion was based on results from only one patient. Multiple subsequent reports revealed no pCA progression with T administration, and some men even experienced subjective improvement, such as resolution of bone pain. More recent data have shown no apparent increase in pCA rates in clinical trials of T supplementation in normal men or men at increased risk for pCA, no relationship of pCA risk with serum T levels in multiple longitudinal studies, and no reduced risk of pCA in men with low T. The apparent paradox in which castration causes pCA to regress yet higher T fails to cause pCA to grow is resolved by a saturation model, in which maximal stimulation of pCA is reached at relatively low levels of T. This historical perspective reveals that there is not now-nor has there ever been-a scientific basis for the belief that T causes pCA to grow. Discarding this modern myth will allow exploration of alternative hypotheses regarding the relationship of T and pCA that may be clinically and scientifically rewarding.
Article
Male hypogonadism is one of the most frequent, but also most underdiagnosed, endocrinopathies. However, the required testosterone treatment is simple and very effective if properly administered. Although testosterone has been available for clinical use for seven decades, until quite recently the treatment modalities were far from ideal. Subdermal testosterone pellets require minor surgery for insertion and often cause local problems. The injectable testosterone enanthate, for a long period the most frequently used mode of administration, lasts for two to four weeks, but produces supraphysiological levels initially and low levels before the next injection. The oral testosterone undecanoate has to be taken three times daily, has an uncertain absorption pattern and results in peaks and valleys of serum testosterone levels throughout the day. With the advent of transdermal testosterone preparations, the desired physiological serum levels could be achieved for the first time. Scrotal testosterone patches were the first to fulfil this requirement. These were followed by nonscrotal skin patches, which, however, cause considerable skin reactions including erythema and blisters. Recently introduced, invisible transdermal testosterone gels increased the intervals of application and are now slowly replacing other modalities. A mucoadhesive buccal testosterone tablet with sustained release is also a recent competing modality. Finally, injectable testosterone undecanoate in castor oil was made into a real depot preparation requiring only four injections per year for replacement therapy. These new preparations with a desired pharmacokinetic testosterone profile give the patient a real choice and make treatment easier. Based on pharmacogenetic considerations taking the androgen receptor polymorphism into account, treatment may be individualized for each patient in the future.
Article
The androgen receptor mediates the androgenic and anabolic activity of the endogenous steroids testosterone and 5alpha-dihydrotestosterone. Current knowledge of the androgen receptor protein structure, and the molecular mechanisms surrounding the binding properties and activities of agonists and antagonists has led to the design and development of novel nonsteroidal ligands with selected tissue-specific androgen receptor agonist and antagonist activities. The activity of these compounds, termed selective androgen receptor modulators (SARMs), is directed toward the maintenance or enhancement of anabolic effects on bone and muscle with minimal androgenic effects on prostate growth. SARMs are of potential therapeutic value in the treatment of male hypogonadism, osteoporosis, frailty and muscle wasting, burn injury and would healing, anemia, mood and depression, benign prostatic hyperplasia and prostate cancer.
Negro-Vilar, Steroid receptor mod-ulators: approaches to selectivity for androgen receptor
  • J N Miner
  • K Burkett
  • W Chang
J.N. Miner, K. Burkett, W. Chang, A. Negro-Vilar, Steroid receptor mod-ulators: approaches to selectivity for androgen receptor, in: Keystone Symposium on Selective Nuclear Receptor Modulators, Breckenridge, USA, 2005.
Steroid receptor modulators: approaches to selectivity for androgen receptor
  • Miner