Article

The Effects of Bone Remodeling Inhibition by Alendronate on Three-Dimensional Microarchitecture of Subchondral Bone Tissues in Guinea Pig Primary Osteoarthrosis

Orthopedic Research Laboratory, Department of Orthopedics, Aarhus University Hospital, Aarhus, Denmark.
Calcified Tissue International (Impact Factor: 3.27). 02/2008; 82(1):77-86. DOI: 10.1007/s00223-007-9093-2
Source: PubMed

ABSTRACT

We assessed whether increase of subchondral bone density enhances cartilage stress during impact loading, leading to progressive cartilage degeneration and accelerated osteoarthrosis (OA) progression. Sixty-six male guinea pigs were randomly divided into six groups. During a 9-week treatment period, four groups received twice-weekly subcutaneous injections of alendronate (ALN) in two doses: two groups received 10 microg/kg and two groups received 50 microg/kg. The two control groups received vehicle. After 9 weeks, one 10 microg/kg ALN group, one 50 microg/kg ALN group, and one control group were killed. The remaining three groups (17-week groups) were left for an additional 8 weeks, receiving the same treatment regimen before death. The left proximal tibiae were scanned by micro-computed tomography to quantify the microarchitecture of subchondral bone, followed by mechanical testing and determination of collagen and mineral. The control groups had typical OA-related cartilage degeneration at 9 and 17 weeks, whereas the 50 microg/kg ALN group had even worse degeneration in the medial condyle. It is unclear whether there is a direct or a secondary effect of ALN on the cartilage. The 9-week ALN group had significantly greater subchondral plate thickness. The 9- and 17-week groups had similar changes of cancellous bone microarchitecture, with greater volume fraction and connectivity and an extremely plate-like structure. The 9-week ALN group had greater bone mineral concentration, and the 17-week ALN group had reduced collagen concentration and greater mineral concentration. Treatment with ALN did not significantly change the mechanical properties of the cancellous bone.

0 Followers
 · 
9 Reads
  • Source
    • "Furthermore, the resorptive agent also enhances the mineralization of newly formed bone alongside early bone formation and cartilage repair in rabbits with an osteochondral defect [33]. Although the efficacy of alendronate treatment for OA in DH was not conclusively established [34], the above findings suggest that the SbpTh is not the only determining factor for the acceleration of cartilage damage. Indeed, the thickening process that coincided with progressive Sb remodelling and hypomineralization could be an important event for the progression of cartilage degradation in OA. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Osteoarthritis (OA) is the most common joint disorder characterised by bone remodelling and cartilage degradation and associated with chondrocyte apoptosis. These processes were investigated at 10, 16, 24, and 30 weeks in Dunkin Hartley (DH) and Bristol Strain 2 (BS2) guinea pigs that develop OA spontaneously. Both strains had a more pronounced chondrocyte apoptosis, cartilage degradation, and subchondral bone changes in the medial than the lateral side of the tibia, and between strains, the changes were always greater and faster in DH than BS2. In the medial side, a significant increase of chondrocyte apoptosis and cartilage degradation was observed in DH between 24 and 30 weeks of age preceded by a progressive thickening and stiffening of subchondral bone plate (Sbp). The Sbp thickness consistently increased over the 30-week study period but the bone mineral density (BMD) of the Sbp gradually decreased after 16 weeks. The absence of these changes in the medial side of BS2 may indicate that the Sbp of DH was undergoing remodelling. Chondrocyte apoptosis was largely confined to the deep zone of articular cartilage and correlated with thickness of the subchondral bone plate suggesting that cartilage degradation and chondrocyte apoptosis may be a consequence of continuous bone remodelling during the development of OA in these animal models of OA.
    Full-text · Article · Jun 2014 · BioMed Research International
  • Source
    • "These observations provide support for the notion that crystals may play an important role in the development of OA and that calcification inhibitors are potentially disease-modifying drugs for crystal-associated OA therapy. However, two bisphosphonates, which are potent calcification inhibitors, failed to inhibit the development of OA in animal models of OA [22, 23], raising doubts as to whether calcification inhibitors are disease-modifying drugs for crystal-associated OA as well as the exact role of calcium crystals in the development of OA. In this study, we sought to examine the biological activities of PC in the absence of calcium crystals and test the hypothesis that PC has unique crystal-independent biological activities which may be responsible, at least in part, for its disease-modifying activity on OA and that PC is potentially a meniscal protective agent. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Phosphocitrate (PC) inhibited meniscal calcification and the development of calcium crystal-associated osteoarthritis (OA) in Hartley guinea pigs. However, the mechanisms remain elusive. This study sought to examine the biological activities of PC in the absence of calcium crystals and test the hypothesis that PC is potentially a meniscal protective agent. We found that PC downregulated the expression of many genes classified in cell proliferation, ossification, prostaglandin metabolic process, and wound healing, including bloom syndrome RecQ helicase-like, cell division cycle 7 homolog, cell division cycle 25 homolog C, ankylosis progressive homolog, prostaglandin-endoperoxide synthases-1/cyclooxygenase-1, and plasminogen activator urokinase receptor. In contrast, PC stimulated the expression of many genes classified in fibroblast growth factor receptor signaling pathway, collagen fibril organization, and extracellular structure organization, including fibroblast growth factor 7, collagen type I, alpha 1, and collagen type XI, alpha 1. Consistent with its effect on the expression of genes classified in cell proliferation, collagen fibril organization, and ossification, PC inhibited the proliferation of OA meniscal cells and meniscal cell-mediated calcification while stimulating the production of collagens. These findings indicate that PC is potentially a meniscal-protective agent and a disease-modifying drug for arthritis associated with severe meniscal degeneration.
    Full-text · Article · Jul 2013
  • Source
    • "In Hartley guinea pig model of crystal-associated OA, PC inhibited meniscal calcification and reduced the degeneration of articular cartilage [26]. These findings appear to provide support for the notions that calcium crystals play an important role in the development and/or progression of OA and that calcification inhibitors are promising disease-modifying drugs for crystal-associated OA therapy [27]. However, a bisphosphonate, a potent calcification inhibitor similar to PC, failed to inhibit the development of OA in Hartley guinea pigs, raising questions about the role of crystals in the development of crystal-associated OA [28]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Phosphocitrate (PC), a calcification inhibitor, inhibits the development of crystal-associated osteoarthritis (OA) in Hartley guinea pigs. However, the molecular mechanisms underlying its disease-modifying effect remain elusive. This study sought to test the hypothesis that PC has calcium crystal-independent biological activities which are, at least in part, responsible for its disease-modifying activity. We found that PC inhibited the proliferation of OA fibroblast-like synoviocytes in the absence of calcium crystals. Consistent with its effect on cell proliferation, PC downregulated the expression of numerous genes classified in cell proliferation. PC also downregulated the expression of many genes classified in angiogenesis and inflammatory response including prostaglandin-endoperoxide synthase 2, interleukin-1 receptor, type I, and chemokine (C-C motif) ligand 2. In contrast, PC upregulated the expression of many genes classified in musculoskeletal tissue development, including aggrecan, type I collagen, and insulin-like growth factor binding protein 5. These findings suggest that PC is not only a promising disease-modifying drug for crystal-associated OA but also for noncrystal-associated OA.
    Full-text · Article · Feb 2013
Show more