Non-charged thiamine analogs as inhibitors of enzyme transketolase

Array BioPharma Inc., 3200 Walnut Street, Boulder, CO 80301, USA.
Bioorganic & medicinal chemistry letters (Impact Factor: 2.42). 02/2008; 18(2):509-12. DOI: 10.1016/j.bmcl.2007.11.098
Source: PubMed


Inhibition of the thiamine-utilizing enzyme transketolase (TK) has been linked with diminished tumor cell proliferation. Most thiamine antagonists have a permanent positive charge on the B-ring, and it has been suggested that this charge is required for diphosphorylation by thiamine pyrophosphokinase (TPPK) and binding to TK. We sought to make neutral thiazolium replacements that would be substrates for TPPK, while not necessarily needing thiamine transporters (ThTr1 and ThTr2) for cell penetration. The synthesis, SAR, and structure-based rationale for highly potent non-thiazolium TK antagonists are presented.

Download full-text


Available from: Steven Armen Boyd
  • Source
    • "In fact, the vast majority of ribose for nucleic acid biosynthesis in cancer cells is provided by the non-oxidative part of the PPP through activity of TKT and TAL. There is experimental evidence that TKT activity can be effectively inhibited by applying coenzymatically inactive thiamin analogs, which in some but not all instances reduced the proliferation of tumor cells [7], [8], [9], [10]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Besides transketolase (TKT), a thiamin-dependent enzyme of the pentose phosphate pathway, the human genome encodes for two closely related transketolase-like proteins, which share a high sequence identity with TKT. Transketolase-like protein 1 (TKTL1) has been implicated in cancerogenesis as its cellular expression levels were reported to directly correlate with invasion efficiency of cancer cells and patient mortality. It has been proposed that TKTL1 exerts its function by catalyzing an unusual enzymatic reaction, a hypothesis that has been the subject of recent controversy. The most striking difference between TKTL1 and TKT is a deletion of 38 consecutive amino acids in the N-terminal domain of the former, which constitute part of the active site in authentic TKT. Our structural and sequence analysis suggested that TKTL1 might not possess transketolase activity. In order to test this hypothesis in the absence of a recombinant expression system for TKTL1 and resilient data on its biochemical properties, we have engineered and biochemically characterized a "pseudo-TKTL1" Δ38 deletion variant of human TKT (TKTΔ38) as a viable model of TKTL1. Although the isolated protein is properly folded under in vitro conditions, both thermal stability as well as stability of the TKT-specific homodimeric assembly are markedly reduced. Circular dichroism and NMR spectroscopic analysis further indicates that TKTΔ38 is unable to bind the thiamin cofactor in a specific manner, even at superphysiological concentrations. No transketolase activity of TKTΔ38 can be detected for conversion of physiological sugar substrates thus arguing against an intrinsically encoded enzymatic function of TKTL1 in tumor cell metabolism.
    Full-text · Article · Oct 2012 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transketolase, the most critical enzyme of the non-oxidative branch of the pentose phosphate pathway, has been reported as a new target protein for cancer research. However, since the crystal structure of human Transketolase is unknown, no structure-based methods can be used to identify new inhibitors. We performed homology modeling of human Transketolase using the crystal structure of yeast as a template, and then refined the model through molecular dynamics simulations. Based on the resulting structure we propose five critical sites containing arginines (Arg 101, Arg 318, Arg 395, Arg 401 and Arg 474) that contribute to dimer stability or catalytic activity. In addition, an interaction analysis of its cofactor (thiamine pyrophosphate) and a binding site description were carried out, suggesting the substrate channel already identified in yeast Transketolase. A binding free energy calculation of its cofactor was performed to establish the main driving forces of binding. In summary, we describe a reliable model of human Transketolase that can be used in structure-based drug design and in the search for new Transketolase inhibitors that disrupt dimer stability and cover the critical sites found.
    No preview · Article · Dec 2008 · Journal of molecular graphics & modelling
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of thiamin diphosphate (ThDP) as a cofactor for enzymes has been known for many decades. This minireview covers the progress made in understanding the catalytic mechanism of ThDP-dependent enzymes through the use of ThDP analogues. Many such analogues have been synthesized and have provided information on the functional groups necessary for the binding and catalytic activity of the cofactor. Through these studies, the important role of hydrophobic interactions in stabilizing reaction intermediates in the catalytic cycle has been recognized. Stable analogues of intermediates in the ThDP-catalysed reaction mechanism have also been synthesized and crystallographic studies using these analogues have allowed enzyme structures to be solved that represent snapshots of the reaction in progress. As well as providing mechanistic information about ThDP-dependent enzymes, many analogues are potent inhibitors of these enzymes. The potential of these compounds as therapeutic targets and as important herbicidal agents is discussed. More recently, the way that ThDP regulates the genes for its own biosynthesis through the action of riboswitches has been discovered. This opens a new branch of thiamin research with the potential to provide new therapeutic targets in the fight against infection.
    Full-text · Article · Jul 2009 · FEBS Journal
Show more