Glomerular Hypertrophy in Offspring of Subtotally Nephrectomized Ewes

Department of Physiology and Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.
The Anatomical Record Advances in Integrative Anatomy and Evolutionary Biology (Impact Factor: 1.54). 03/2008; 291(3):318-24. DOI: 10.1002/ar.20651
Source: PubMed


We have shown that fetuses whose mothers underwent subtotal nephrectomy (STNx) before pregnancy had high urine flow rates and sodium excretions, but lower hematocrits, plasma chloride, and plasma renin levels compared with controls. To see if these functional differences in utero persist after birth and are the result of altered renal development, we studied 8 lambs born to STNx mothers (STNxL) and 10 controls (ConL) in the second week of life. These lambs were of similar body weights, nose-rump lengths and abdominal girths. Their kidney weights were not different (ConL 36.1 +/- 1.9 vs. STNxL 39.8 +/- 3.3 g), nor were kidney dimensions or glomerular number (ConL 423,520 +/- 22,194 vs. STNxL 429,530 +/- 27,471 glomeruli). However, STNxL had 30% larger glomerular volumes (both mean and total, P < 0.01) and there was a positive relationship between total glomerular volume and urinary protein excretion (P < 0.05) in STNxL. Despite this change in glomerular morphology, glomerular filtration rate, tubular function, urine flow, and sodium excretion rates were not different between STNxL and ConL, nor were plasma electrolytes, osmolality, and plasma renin levels. Thus while many of the functional differences seen in late gestation were not present at 1-2 weeks after birth, the alteration in glomerular size and its relationship to protein excretion suggests that exposure to this altered intrauterine environment may predispose offspring of mothers with renal dysfunction to renal disease in adult life.

Download full-text


Available from: John F Bertram, Oct 09, 2014
  • Source
    • "Together these findings suggest that there is a larger surface area for filtration in fetuses of STNx ewes, along with an enlarged proximal tubule. K f is a function of filtration surface area and the hydraulic conductivity of the filtration barrier, and although we cannot comment on differences in hydraulic conductivity we have previously reported that 1–2-week-old lambs born to STNx ewes had enlarged glomeruli (glomerular volume was increased by 30% while glomerular number was not altered) (Brandon et al. 2008). Since the fetuses in the current study were close to term, and it is recognized that nephron formation is complete by 130 days in the fetal sheep (Robillard et al. 1981), it is likely that the glomerular hypertrophy we observed in after birth in STNx offspring, was already present. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Fetuses of pregnant ewes, which were subtotally nephrectomized prior to mating, were studied to assess whether mild maternal renal impairment would affect fetal tubuloglomerular feedback (TGF) under control conditions and after the inhibition of macula densa-derived nitric oxide (NO). Based on previous observations we hypothesized that, the TGF curve of fetuses of subtotally nephrectomized (STNx) ewes would resemble that of a volume expanded fetus with a high production rate of NO and that inhibition of neuronal nitric oxide synthase (nNOS) would increase the sensitivity of the TGF system in these fetuses. Renal function studies were performed on anaesthetized fetal sheep (133-140 days gestation; term ~150 days; Isoflurane 2-4% in oxygen). Fetuses were removed from the uterus and placed in a water bath (39.5°C) while maintaining umbilical blood flow. Glomerular filtration rate (GFR) and urine flow rate were markedly increased in fetuses of STNx ewes compared to fetuses of untreated ewes. Interestingly, and contrary to our hypothesis, the fetuses of STNx ewes exhibited no difference in TGF sensitivity in the presence or absence of 7-nitroindazole (7NI; nNOS inhibitor), compared to fetuses of untreated ewes, although sensitivity and reactivity increased in both groups after 7NI. There was however, a decrease in the stop flow pressure and net filtration pressure with an increase in the filtration coefficient (Kf). These factors suggest that maternal renal impairment drives the glomerular hypertrophy which has previously been found to be present in the neonatal period. Thus, we conclude that at ~138 days gestation, the fetal kidney has matured functionally and fetuses of STNx ewes are able to maintain fluid and electrolyte homeostasis even in the presence of increased transplacental flux. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
    Full-text · Article · Jul 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To examine the programming effects of maternal renal dysfunction (created by subtotal nephrectomy in ewes prior to mating; STNx), renal and cardiovascular function were studied in 6-month-old male and female offspring of STNx and control pregnancies. After studies were conducted on a low salt diet (LSD) some female offspring underwent salt loading (0.17 M NaCl in the drinking water for 5-7 days; HSD). On LSD both male and female offspring of STNx had similar mean arterial pressures (MAP), heart rates, cardiac outputs and renal function to those measured in offspring of control ewes. In female STNx offspring on a HSD, plasma sodium levels increased and haematocrits fell, indicating volume expansion (P < 0.05). Plasma renin levels were not suppressed despite the increases in plasma sodium concentrations, but aldosterone levels were reduced. In control animals plasma renin levels fell (P < 0.05) but there was no change in plasma aldosterone concentrations. There was a positive relationship between GFR and MAP which was present only in female STNx offspring. In conclusion, in STNx offspring there was an impaired ability to regulate glomerular filtration independent of arterial pressure, renin release was insensitive to a high salt intake and control of aldosterone secretion was abnormal. This study provides evidence of abnormal programming of the renin-angiotensin system and glomerular function in offspring of pregnancies in which there is impaired maternal renal function.
    Full-text · Article · Nov 2008 · The Journal of Physiology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Exposure to clinically relevant doses of glucocorticoids during fetal life increases blood pressure in adult male and female sheep. The purpose of this study was to evaluate the effects of prenatal exposure to betamethasone at 80-81 days of gestation on renal function in ewes and rams at 1.5 yr of age. In prenatal betamethasone-exposed males, compared with the vehicle-exposed animals, basal glomerular filtration rate (GFR) (1.93 +/- 0.08 vs. 2.27 +/- 0.10 ml.min(-1).kg body wt(-1)) and the ability to excrete an acute Na+ load (37.1 +/- 4.4 vs. 53.7 +/- 9.7%) were reduced. (P < 0.03 and P = 0.03, respectively). In contrast, prenatal betamethasone exposure had no effect on basal GFR, Na+ excretion, or the percentage of the Na+ load excreted during the experiment in females. Systemic infusions of ANG-(1-7) at 9 ng.min(-1).kg(-1) for 2 h had minimal effects on basal GFR, renal plasma flow, and Na+ excretion in males but increased Na+ excretion in females. However, the percentage of Na+ load excreted during ANG-(1-7) infusion did not change in prenatal betamethasone-exposed females (113.1 +/- 14.2 vs. 98.1 +/- 12.2%) compared with the significant increase in vehicle females (139.2 +/- 22.3 vs. 92.2 +/- 7.5%) (P = 0.01). The data indicate that antenatal betamethasone exposure produces gender-specific alternations in renal function and thus suggest that different mechanisms underlie the antenatal steroid-induced elevations in blood pressure in male and female offspring.
    No preview · Article · Dec 2008 · AJP Regulatory Integrative and Comparative Physiology
Show more