ArticlePDF AvailableLiterature Review

Anti-aging properties of resveratrol: Review and report of a potent new antioxidant skin care formulation

Wiley
Journal of Cosmetic Dermatology
Authors:

Abstract and Figures

Resveratrol, an antioxidant polyphenol from red wine, has been the subject of intense interest in recent years due to a range of unique anti-aging properties. These include cardiovascular benefits via increased nitric oxide production, down-regulation of vasoactive peptides, lowered levels of oxidized low-density lipoprotein, and cyclooxygenase inhibition; possible benefits on Alzheimer's disease by breakdown of beta-amyloid and direct effects on neural tissues; phytohormonal actions; anticancer properties via modulation of signal transduction, which translates into anti-initiation, antipromotion, and antiprogression effects; antimicrobial effects; and sirtuin activation, which is believed to be involved in the caloric restriction-longevity effect. Here we report a resveratrol-based skin care formulation, with 17 times greater antioxidant activity than idebenone. The role of resveratrol in prevention of photoaging is reviewed and compared with other antioxidants used in skin care products.
Content may be subject to copyright.
A preview of the PDF is not available
... Reduced levels of hyperpigmentation were observed in the [89]. Resveratrol is a potent antioxidant that has effective anti-aging benefits and is extensively used in skin care formulations [90]. Furthermore, it is very helpful in reducing signs of photoaging [90] as it possesses the unique capacity to perforate into the subcutaneous layers of the skin and stimulate the increase of collagen III concentrations [91]. ...
... Resveratrol is a potent antioxidant that has effective anti-aging benefits and is extensively used in skin care formulations [90]. Furthermore, it is very helpful in reducing signs of photoaging [90] as it possesses the unique capacity to perforate into the subcutaneous layers of the skin and stimulate the increase of collagen III concentrations [91]. Schlessinger et al. [92], stated that hexylresorcinol is an efficient ingredient in anti-aging therapy for the skin. ...
Article
Full-text available
Millions of people around the world fall within the age group of 35 and above; having fluctuating lifestyles, increased exposure to blue light, and a faster-depleting ozone layer that enhances entry of UVA and UVB rays in the skin which tends to age faster leading into collagen degradation that results in fine lines and decreased cell senescence. The goal of skin rejuvenation is to have healthy skin. Cosmeceuticals incorporating retinoids have been increasingly used over the past few years to promote collagen synthesis and rejuvenate the skin. Photo-induced and chronological aging processes are decelerated with retinoid application that endorses skin elasticity by free radical neutralization, new cell growth, and blood vessel promotion within the skin to help fight pigmentation and reduce fine lines. Retinoids are commercially available as creams and serums for topical application. Nanotechnology is used in the development of retinoids to counteract adverse reactions like skin irritation and purging to improve its stability, efficacy, and acceptability. Emerging studies on retinoids include formulating them within liposomes, solid lipid nanoparticles, nano-emulgels, and hydrogels. This review details understanding the aging process, the mechanism of action of retinoids to counterfeit aging, and the potential use of nanotechnological delivery in cosmeceuticals.
... µg/mL) [23][24][25][26][27][28][29][30][31]. Several studies have reported the potential of resveratrol and its derivative as human health agents related to anti-inflammatory [32][33][34][35], antioxidant [32,36], anticancer [37,38], antifungal [39], antibacterial [39], and antiaging effects [40][41][42]. Treatment with 0.125-4 µg/mL of resveratrol significantly increased the anti-inflammatory activities in human retinal pigment epithelial cells [35]. Chen et al. [34] synthesized the novel resveratrol-based flavonol derivatives and found that 10 µM of 2-(2,4-dimethoxy-6-(4-methoxystyryl)phenyl)-3-hydroxy-4H-chromen-4-one gives the most anti-inflammatory activities in RAW264.7 cells. ...
Article
Full-text available
In the current study, we aimed to evaluate the combined antimelanogenic effects of resveratrol- and protopanaxadiol (PPD)-enriched rice seed extracts (DJ526 and DJ-PPD) in melan-a cells. The treatment antioxidant capacity was evaluated using the ABTS radical scavenging method. TR_3 (70% [wight (w)/w] of DJ526 and 30% [w/w] of DJ-PPD) markedly increased the antioxidant activity at a level similar to that of DJ526 and DJ-PPD alone. The antimelanogenic activities in melan-a cells were evaluated after co-culturing of treatments at the concentration of 100 μg/mL. The in vitro melan-a cell experiment showed that treatment with the DJ526 and DJ-PPD mixture significantly reduced the cellular tyrosinase activity and melanin content; suppressed the expression of melanogenesis-related genes and proteins; decreased the number and size of melanin-containing cells; upregulated phosphorylated extracellular signal-regulated kinase 1/2 and protein kinase B expression levels; and suppressed the expression of p-p38 MAPK. These results show that DJ-PPD does not interfere with the antioxidant and antimelanogeneic activities of DJ526 but enhances the antioxidant and antimelanogeneic activities of DJ526. These findings indicate the potential of resveratrol- and PPD-enriched rice seeds as novel agents for controlling hyperpigmentation.
... While it indirectly activates human SIRT1, direct evidence for increased human lifespan remains inconclusive. Commercially, resveratrol finds application in facial skin products as it displays a superior antioxidant capacity compared to idebenone [52]. Additionally, distinct nanocarriers for topical administration and microemulsions (e.g., containing a large amount of natural deep eutectic solvents) [53] can also: improve resveratrol solubility, provide photoprotection, enhance skin penetration, and inhibit trans-to-cis isomerization (de Vries et al. 2021). ...
Article
Resveratrol is an antioxidant abundant in plants like grapes and peanuts and has garnered significant attention for its potential therapeutic applications. This review explores its chemical attributes, stability, and solubility, influencing its diverse applications and bioavailability. Resveratrol’s multifaceted therapeutic roles encompass: antioxidant, cardioprotective, anti-inflammatory, neuroprotective, anti-aging, and anticancer properties. While traditionally studied in preclinical settings, a surge in clinical trials underscores resveratrol’s promise for human health. Over 250 recent clinical trials investigate its effects alone and in combination with other compounds. Commercially utilized in food, cosmetics, supplements, and pharmaceuticals, the resveratrol market is expanding, driven by microbial fermentation. Microbes offer advantages over plant extraction and chemical synthesis, providing cost-effective, pure, and sustainable production. Microbial biosynthesis can be attained from carbon sources, such as glucose or xylose, among others, which can be obtained from renewable resources or agro-industrial wastes. While Saccharomyces cerevisiae has been the most used host, non-conventional yeasts like Yarrowia lipolytica and bacteria like Escherichia coli have also demonstrated potential. Genetic modifications such as increasing acetyl-CoA/malonyl-CoA pools, boosting the shikimate pathway, or multi-copy expression of pathway genes, allied to the optimization of fermentation strategies have been promising in increasing titers. Microbial biosynthesis of resveratrol aligns with the shift toward sustainable and renewable bio-based compounds, exemplifying a circular bioeconomy. Concluding, microbial fermentation presents a promising avenue for efficient resveratrol production, driven by genetic engineering, pathway optimization, and fermentation strategies. These advances hold the key to unlocking the potential of resveratrol for diverse therapeutic applications, contributing to a greener and sustainable future.
... A derivative used topically for the treatment of acne vulgaris. [1] It is white colored amorphous powder, relatively insoluble in water and freely soluble in methanol [2] as benzoyl peroxide (BPO) is a potent antibacterial agent which is the first-line drug in the treatment of acne vulgaris. [3] The chemical structure of resveratrol and BPO is shown in Figures 1 and 2. BPO is an organic compound in the peroxide family. ...
... It is a powerful antioxidant produced by some plants to protect them against environmental stresses .Resveratrol has been shown to have a variety of therapeutic properties including antioxidant, anti-inflammatory, antimicrobial, antineoplastic, and wound healing activity. [2] Studies have found RES to be one of the strongest antioxidants, stronger than Vitamin A, C, and E [3]. Antioxidants reduce lipid peroxidation and the development of reactive oxygen species, which cause tissue inflammation and DNA damage. ...
... Plants produce a variety of secondary metabolites, but the two primary substances with significant antioxidant action are phenolics and flavonoids. They are frequently used in combinations and are the primary components of many goods [150]. Evaluation of the effect of a compound's combination is crucial because it may influence the compound's qualities [151]. ...
Chapter
The increasing occurrence of chronic metabolic diseases (CMDs) presents a substantial public health challenge worldwide, necessitating the development of pioneering therapeutic approaches. Flavonoids, which are naturally occurring compounds, exert a broad spectrum of biological activities, encompassing their anti-inflammatory, anti-diabetic, and antioxidant properties, among others. Though they have a potential role in treating CMDs, they face challenges in their extraction and purification, poor gastrointestinal absorption, low solubility, and rapid metabolism, which impede their clinical applicability. Nanotherapeutics has been receiving significant attention as it aids in resolving these issues. Hence, the purpose of this chapter is to shed light on the advances in different nanoengineered.
... Plants produce a variety of secondary metabolites, but the two primary substances with significant antioxidant action are phenolics and flavonoids. They are frequently used in combinations and are the primary components of many goods [150]. Evaluation of the effect of a compound's combination is crucial because it may influence the compound's qualities [151]. ...
Chapter
The increasing occurrence of chronic metabolic diseases (CMDs) presents a substantial public health challenge worldwide, necessitating the development of pioneering therapeutic approaches. Flavonoids, which are naturally occurring compounds, exert a broad spectrum of biological activities, encompassing their anti-inflammatory, anti-diabetic, and antioxidant properties, among others. Though they have a potential role in treating CMDs, they face challenges in their extraction and purification, poor gastrointestinal absorption, low solubility, and rapid metabolism, which impede their clinical applicability. Nanotherapeutics has been receiving significant attention as it aids in resolving these issues. Hence, the purpose of this chapter is to shed light on the advances in different nanoengineered
... The oxidative theory activates reactive oxygen species (ROS), which is the most common in the public mind [1]. It could be more comprehensible considering that most of the lipids in the stratum corneum are unsaturated and, therefore, susceptible to free radical damage [2]. So, dermal anti-aging product formulations use exogenous antioxidants such as vitamins, polyphenols, and flavonoids that our bodies can produce [3]. ...
Article
Full-text available
We developed novel and optimal Q10-NLC/SLN formulations as antioxidant and anti-tyrosinase agents. The formulations were analyzed for particle size, morphology, entrapment efficiency (EE %), and long-term stability. The in vitro drug release and in vivo skin penetration were evaluated using dialysis bag diffusion and Sprague Dawley (SD) rats, respectively. Cytotoxicity and protecting effects were assessed by AlamarBlue® assay, ROS level by DCFH-DA, and tyrosinase activity by l-DOPA assay, measuring the absorbance at 470 nm. The selected formulations had optimal surface characterizations, including Z-average size, PDI, and Zeta potential ranging from 125 to 207 nm, 0.09–0.22, and −7 to −24, respectively. They also exhibited physiochemical stability for up to 6 months and EE% above 80 %. The lipids ratio and co-Q10 amount as variable factors significantly affected particle size and zeta potential but were insignificant on PDI. The in vitro release diagram showed that Q10-NLC/SLN revealed a fast release during the first 8 h and prolonged release afterward. The in vivo skin permeation revealed a higher accumulative uptake of co-Q10 in the skin for Q10-NLC/SLN compared to Q10 emulsions. Both selected Q10-NLC and Q10-SLN could reduce intracellular ROS after exposure to H2O2. The Q10-NLC was found to be more potent for inhibiting the tyrosinase activity compared to O10-SLN. The results suggest that the new formulations are promising carriers for topical delivery of co-Q10 as an anti-aging and skin-whitening agent.
... Resveratrol is a polyphenolic compound found in various plants such as plums, berries, grapes, and peanuts [17][18][19][20][21][22]. Many biochemical properties of resveratrol and its derivative, piceid, have been demonstrated to be potentially useful agents for human health, including preventing skin aging and pigmentation [23][24][25], antioxidant [26,27], anti-inflammatory [26,[28][29][30], antitumor, antibacterial, and antifungal properties [31][32][33]. Additionally, oral administration of resveratrol reduced UV-induced skin edema and wrinkles in ICR mice through the Nrf2/HO-1 signaling pathway [34]. ...
Article
Full-text available
The excessive production of melanin can cause skin diseases and hyperpigmentation. In this study, resveratrol contained in Dongjin rice seed (DJ526) was increased through callus induction. The antioxidant capacity of resveratrol-enriched rice callus was evaluated using the ABTS radical scavenging method and was equivalent to that of vitamin C. DJ526 rice callus extract significantly increased antioxidant activities in a concentration-dependent manner. The anti-melanogenesis effects of DJ526 rice callus extract were also evaluated in melan-a cells. Resveratrol-enriched rice callus extract significantly (i) decreased the size and number of melanin-containing cells, (ii) suppressed the activity of cellular tyrosinase and melanin content, (iii) downregulated the expression of microphthalmia-associated transcription factor, tyrosinase, tyrosinase-related protein-1, and tyrosinase-related protein-2, (iv) increased the expression of phosphorylated extracellular signal-regulated kinase 1/2 and protein kinase B, and (v) inhibited the activation of phosphorylated p38 in melan-a cells. From the above observations, DJ526 rice callus extract showed strong antioxidant and anti-melanogenesis activity at the concentration test. These findings indicate the potential of resveratrol-enriched rice callus as a novel agent for controlling hyperpigmentation.
Article
Cyclophosphamide (CP) is a chemotherapy drug that can be used to treat different types of cancers, but its nephrotoxicity effects restrict its usage in clinical settings. Currently, we examined whether the polyphenolic antioxidant and anti-inflammatory compound, resveratrol (RES), can protect against CP-induced nephrotoxicity. Twenty male mature Sprague-Dawley rats were divided into 4 groups of equal size: control group, RES group which received RES (20 mg/kg) for 15 consecutive days, CP group which received CP as a single dose (150 mg/kg) on day 16, and CP+RES group which was similar of the RES and CP groups. Tissue samples were obtained for the stereological, immunohistochemical, biochemical, and molecular evaluations. Findings showed that the numerical density of glomerulus, total volumes and interstitial tissue volumes of kidney, antioxidative biomarkers concentrations (CAT, GSH, SOD), and expression levels of OCT2 gene were notably greater in the CP+RES group than the CP group (P<0.05). During treatment, there was a significant decrease in the serum levels of the urea and creatinine, the densities of apoptotic and inflammatory cells, as well as levels of MDA and proinflammatory cytokines (IL-1β, TNF-α, and PFN1) in the CP+RES group than the CP group (P<0.05). We deduce that giving RES can suppress of glomerular damage, inflammation, apoptosis, and oxidative stress of acute kidney injury induced by CP toxicity.
Article
Full-text available
The "French paradox" (apparent compatibility of a high fat diet with a low incidence of coronary atherosclerosis) has been attributed to the regular drinking of red wine. However, the alcohol content of wine may not be the sole explanation for this protection. Red wine also contains phenolic compounds, and the antioxidant properties of these may have an important role. In in-vitro studies with phenolic substances in red wine and normal human low-density lipoprotein (LDL) we found that red wine inhibits the copper-catalysed oxidation of LDL. Wine diluted 1000-fold containing 10 mumol/L total phenolics inhibited LDL oxidation significantly more than alpha-tocopherol. Our findings show that the non-alcoholic components of red wine have potent antioxidant properties toward oxidation of human LDL.
Article
Full-text available
Resveratrol (3,5,4'-trihydroxystilbene) extends the lifespan of diverse species including Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster. In these organisms, lifespan extension is dependent on Sir2, a conserved deacetylase proposed to underlie the beneficial effects of caloric restriction. Here we show that resveratrol shifts the physiology of middle-aged mice on a high-calorie diet towards that of mice on a standard diet and significantly increases their survival. Resveratrol produces changes associated with longer lifespan, including increased insulin sensitivity, reduced insulin-like growth factor-1 (IGF-I) levels, increased AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor- coactivator 1 (PGC-1) activity, increased mitochondrial number, and improved motor function. Parametric analysis of gene set enrichment revealed that resveratrol opposed the effects of the high-calorie diet in 144 out of 153 significantly altered pathways. These data show that improving general health in mammals using small molecules is an attainable goal, and point to new approaches for treating obesity-related disorders and diseases of ageing.
Article
Full-text available
The "French paradox" (apparent compatibility of a high fat diet with a low incidence of coronary atherosclerosis) has been attributed to the regular drinking of red wine. However, the alcohol content of wine may not be the sole explanation for this protection. Red wine also contains phenolic compounds, and the antioxidant properties of these may have an important role. In in-vitro studies with phenolic substances in red wine and normal human low-density lipoprotein (LDL) we found that red wine inhibits the copper-catalysed oxidation of LDL. Wine diluted 1000-fold containing 10 mumol/L total phenolics inhibited LDL oxidation significantly more than alpha-tocopherol. Our findings show that the non-alcoholic components of red wine have potent antioxidant properties toward oxidation of human LDL.
Article
The effects of stilbene derivatives, including resveratrol, diethylstilboestrol and stilbene, as antioxidants or prooxidants were examined. Resveratrol and diethylstilboestrol, but not stilbene, strongly inhibited NADPH- and adenosine 5′-diphosphate (ADP)-Fe3+-dependent lipid peroxidation at the initial and propagation stages. In addition, phenolic stilbenes also inhibited ultraviolet light-induced lipid peroxidation. Resveratrol and diethylstilboestrol efficiently scavenged 2,2′-azobis-(2-amidinopropane)-dihydrochloride peroxyl radicals. However, 2,2′-diphenyl-p-picrylhydrazyl radicals were trapped only by resveratrol, but not by diethylstilboestrol. These results suggest that the inhibitory effect of phenolic stilbenes on lipid peroxidation was due to their scavenging ability of lipid peroxyl and/or carbon-cantered radicals. Resveratrol efficiently reduced ADP-Fe3+, but not EDTA-Fe3+. Stilbenes and diethylstilboestrol did not reduce either ADP-Fe3+ or EDTA-Fe3+. The strand breaks of DNA were stimulated during the interaction of resveratrol with ADP-Fe3+ in the presence of H2O2. These results suggest that phenolic stilbenes act as antioxidants of membrane lipids and that resveratrol has a prooxidative effect DNA damage during interaction with ADP-Fe3+ in the presence of H2O2.
Article
Trans-resveratrol (4,3′,5′-trihydroxy stilbene) has been identified as the major component responsible for the blue fluorescence of grapevine leaf tissue following fungal infection or exposure to ultraviolet light. The biosynthesis of this compound appears to be a non-specific response of members of the Vitaceae to infection or injury. The compound is not detectable in healthy leaves but accumulates to between 50 and 400 μg/g fresh weight in infected or u.v.-irradiated leaves and is a major constituent (c. 700 μg/g) of lignified stem tissue. The biological significance of the production of resveratrol is discussed.
Article
A number of lines of evidence suggest that red wine may be more effective than other alcoholic beverages in decreasing the risk of coronary heart disease (CHD) mortality. This protection over and above that due to ethanol itself may be explained by phenolic components with which red wines are richly endowed. We have studied the effects of the trihydroxy stilbene trans-resveratrol on human platelet aggregation and on the synthesis of three eicosanoids from arachidonate by platelets, i.e. thromboxane B2 (TxB2), hydroxyheptadecatrienoate (HHT) and 12-hydroxyeicosatetraenoate (12-HETE). These effects were compared with the actions of other wine phenolics (quercetin, catechin and epicatechin) and antioxidants (alpha-tocopherol, hydroquinone and butylated hydroxytoluene). trans-Resveratrol and quercetin demonstrated a dose-dependent inhibition of both thrombin-induced and ADP-induced platelet aggregation, whereas ethanol inhibited only thrombin-induced aggregation. The other compounds tested were inactive. trans-Resveratrol also inhibited the synthesis of TxB2, HHT, and to a lesser extent 12-HETE, from arachidonate in a dose-dependent manner. Quercetin inhibited only 12-HETE synthesis, and hydroquinone caused slight inhibition of TxB2 synthesis, the remaining compounds being ineffective. De-alcoholized red wines inhibited platelet aggregation; their ability to inhibit the synthesis of TxB2 but not that of 12-HETE from labelled arachidonate by washed human platelets was proportional to their trans-resveratrol concentration. These results are consistent with the notion that trans-resveratrol may contribute to the presumed protective role of red wine against atherosclerosis and CHD.
Article
Metabolism, like other aspects of life, involves tradeoffs. Oxidant by-products of normal metabolism cause extensive damage to DNA, protein, and lipid. We argue that this damage (the same as that produced by radiation) is a major contributor to aging and to degenerative diseases of aging such as cancer, cardiovascular disease, immune-system decline, brain dysfunction, and cataracts. Antioxidant defenses against this damage include ascorbate, tocopherol, and carotenoids. Dietary fruits and vegetables are the principal source of ascorbate and carotenoids and are one source of tocopherol. Low dietary intake of fruits and vegetables doubles the risk of most types of cancer as compared to high intake and also markedly increases the risk of heart disease and cataracts. Since only 9% of Americans eat the recommended five servings of fruits and vegetables per day, the opportunity for improving health by improving diet is great.
Article
The phytochemical resveratrol, which is found in grapes and wine, has been reported to have a variety of anti-inflammatory, anti-platelet, and anti-carcinogenic effects. Based on its structural similarity to diethylstilbestrol, a synthetic estrogen, we examined whether resveratrol might be a phytoestrogen. At concentrations (approximately 3-10 microM) comparable to those required for its other biological effects, resveratrol inhibited the binding of labeled estradiol to the estrogen receptor and it activated transcription of estrogen-responsive reporter genes transfected into human breast cancer cells. This transcriptional activation was estrogen receptor-dependent, required an estrogen response element in the reporter gene, and was inhibited by specific estrogen antagonists. In some cell types (e.g., MCF-7 cells), resveratrol functioned as a superagonist (i.e., produced a greater maximal transcriptional response than estradiol) whereas in others it produced activation equal to or less than that of estradiol. Resveratrol also increased the expression of native estrogen-regulated genes, and it stimulated the proliferation of estrogen-dependent T47D breast cancer cells. We conclude that resveratrol is a phytoestrogen and that it exhibits variable degrees of estrogen receptor agonism in different test systems. The estrogenic actions of resveratrol broaden the spectrum of its biological actions and may be relevant to the reported cardiovascular benefits of drinking wine.