Ayala, Y. M., Misteli, T. & Baralle, F. E. TDP-43 regulates retinoblastoma protein phosphorylation through the repression of cyclin-dependent kinase 6 expression. Proc. Natl Acad. Sci. USA 105, 3785-3789

International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34012 Trieste, Italy.
Proceedings of the National Academy of Sciences (Impact Factor: 9.67). 04/2008; 105(10):3785-9. DOI: 10.1073/pnas.0800546105
Source: PubMed


TDP-43 (for TAR DNA binding protein) is a highly conserved heterogeneous nuclear ribonucleoprotein (hnRNP) involved in specific pre-mRNA splicing and transcription events. TDP-43 recently has been identified as the main component of cytoplasmic inclusions in frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS), two neurodegenerative disorders. The cellular role of this protein remains to be identified. Here, we show that loss of TDP-43 results in dysmorphic nuclear shape, misregulation of the cell cycle, and apoptosis. Removal of TDP-43 in human cells significantly increases cyclin-dependent kinase 6 (Cdk6) protein and transcript levels. The control of Cdk6 expression mediated by TDP-43 involves GT repeats in the target gene sequence. Cdk6 up-regulation in TDP-43-depleted cells is accompanied by an increase in phosphorylation of two of its major targets, the retinoblastoma protein pRb and pRb-related protein pRb2/p130. TDP-43 silencing also is followed by changes in the expression levels of several factors that control cell proliferation. Morphological nuclear defects and increased apoptosis upon TDP-43 loss are mediated via the pRb pathway because pRb-negative cells (Saos-2) do not undergo programmed cell death or nuclear shape deformation upon TDP-43 removal. Our results identify a regulatory target of TDP-43 and show that TDP-43 depletion has important consequences in essential metabolic processes in human cells.

Full-text preview

Available from:
  • Source
    • "Expression of TDP-43 containing disease linked mutations found in ALS appears to increase the production of C-terminal fragments, aggregation and toxicity [9], [11], [12]. Loss of TDP-43 also appears to be deleterious to cell health; knockdown in vitro confers toxicity and knockout results in lethality in vivo, both in utero in constitutive Tardbp−/− mice and in conditional knockout animals in which deletion is postponed until adulthood [13], [14], [15], [16]. Loss of TDP-43 specifically in motor neurons results in cell death and an ALS-like phenotype in mice [17] and reduced TDP-43 expression in zebrafish and drosophila results in motor deficits [18], [19]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The majority of cases of frontotemporal lobar degeneration and amyotrophic lateral sclerosis are pathologically defined by the cleavage, cytoplasmic redistribution and aggregation of TAR DNA binding protein of 43 kDa (TDP-43). To examine the contribution of these potentially toxic mechanisms in vivo, we generated transgenic mice expressing human TDP-43 containing the familial amyotrophic lateral sclerosis-linked M337V mutation and identified two lines that developed neurological phenotypes of differing severity and progression. The first developed a rapid cortical neurodegenerative phenotype in the early postnatal period, characterized by fragmentation of TDP-43 and loss of endogenous murine Tdp-43, but entirely lacking aggregates of ubiquitin or TDP-43. A second, low expressing line was aged to 25 months without a severe neurodegenerative phenotype, despite a 30% loss of mouse Tdp-43 and accumulation of lower molecular weight TDP-43 species. Furthermore, TDP-43 fragments generated during neurodegeneration were not C-terminal, but rather were derived from a central portion of human TDP-43. Thus we find that aggregation is not required for cell loss, loss of murine Tdp-43 is not necessarily sufficient in order to develop a severe neurodegenerative phenotype and lower molecular weight TDP-43 positive species in mouse models should not be inherently assumed to be representative of human disease. Our findings are significant for the interpretation of other transgenic studies of TDP-43 proteinopathy.
    Full-text · Article · Jan 2014 · PLoS ONE
  • Source
    • "TDP-43 has an evolutionary conserved structure and preferentially binds to TG/UG repeats [17] [18]. TDP-43 was originally found to repress gene expression by binding to the promoter region of the gene [19] [20] [21]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The Tar DNA-binding protein 43 (TDP-43) regulates RNA processing and miRNA biogenesis and is known to be involved in neurodegeneration. Messenger RNA (mRNA) targets of TDP-43 have recently been systematically identified, but small RNAs (sRNAs) bound by TDP-43 have not been studied in details. Here, we reexamine cross-linking, immunoprecipitation and sequencing (CLIP-seq) data, and identify pre-miRNAs, miRNAs and piRNAs bound by TDP-43 in human and mouse brains. Subsequent analysis of TDP-43 binding miRNAs suggests that target genes are enriched in functions involving synaptic activities. We further identify a novel miRNA (miR-NID1) processed from the intron 5 of human neurexin 1, NRXN1, and show that miR-NID1 represses NRXN1 expression by binding to TDP-43. Our results are in accordance with previously published data indicating TDP-43 through binding of specific miRNAs to play roles in neurodevelopmental activities and neurological disorders and further our understanding of TDP-43 function.
    Full-text · Article · Jul 2013 · Genomics
  • Source
    • "It is not clear whether this involves TDP-43 stress granule accumulation, however, notably, CDC7 and CDK2 are closely associated [45]. It has also been shown that loss of TDP-43 expression leads to altered CDK6 protein and transcript levels [46] although the specific control of hnRNPs by CDKs has not been well investigated. The CDK inhibitors used here have a potential to inhibit several members of the CDK family including CDK1, CDK2/4, and/or CDK5 [47], [48]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Abnormal processing of TAR DNA binding protein 43 (TDP-43) has been identified as a major factor in neuronal degeneration during amyotrophic lateral sclerosis (ALS) or frontotemporal lobar degeneration (FTLD). It is unclear how changes to TDP-43, including nuclear to cytosolic translocation and subsequent accumulation, are controlled in these diseases. TDP-43 is a member of the heterogeneous ribonucleoprotein (hnRNP) RNA binding protein family and is known to associate with cytosolic RNA stress granule proteins in ALS and FTLD. hnRNP trafficking and accumulation is controlled by the action of specific kinases including members of the mitogen-activated protein kinase (MAPK) pathway. However, little is known about how kinase pathways control TDP-43 movement and accumulation. In this study, we used an in vitro model of TDP-43-positve stress granule formation to screen for the effect of kinase inhibitors on TDP-43 accumulation. We found that while a number of kinase inhibitors, particularly of the MAPK pathways modulated both TDP-43 and the global stress granule marker, human antigen R (HuR), multiple inhibitors were more specific to TDP-43 accumulation, including inhibitors of cyclin-dependent kinases (CDKs) and glycogen synthase kinase 3 (GSK3). Close correlation was observed between effects of these inhibitors on TDP-43, hnRNP K and TIAR, but often with different effects on HuR accumulation. This may indicate a potential interaction between TDP-43, hnRNP K and TIAR. CDK inhibitors were also found to reverse pre-formed TDP-43-positive stress granules and both CDK and GSK3 inhibitors abrogated the accumulation of C-terminal TDP-43 (219-414) in transfected cells. Further studies are required to confirm the specific kinases involved and whether their action is through phosphorylation of the TDP-43 binding partner hnRNP K. This knowledge provides a valuable insight into the mechanisms controlling abnormal cytoplasmic TDP-43 accumulation and may herald new opportunities for kinase modulation-based therapeutic intervention in ALS and FTLD.
    Full-text · Article · Jun 2013 · PLoS ONE
Show more