Chip-Based Enrichment and NanoLC−MS/MS Analysis of Phosphopeptides from Whole Lysates

Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands.
Journal of Proteome Research (Impact Factor: 4.25). 05/2008; 7(4):1565-71. DOI: 10.1021/pr700635a
Source: PubMed


Protein phosphorylation may be the most widespread and possibly most important post-translational modification (PTM). Considering such a claim, it should be no surprise that huge efforts have been made to improve methods to allow comprehensive study of cellular phosphorylation events. Nevertheless, comprehensive identification of sites of protein phosphorylation is still a challenge, best left to experienced proteomics experts. Recent advances in HPLC chip manufacturing have created an environment to allow automation of popular techniques in the bioanalytical world. One such tool that would benefit from the increased ease and confidence brought by automated 'nanoflow' analysis is phosphopeptide enrichment. To this end, we have developed a reusable HPLC nanoflow rate chip using TiO 2 particles for selective phosphopeptide enrichment. Such a design proved robust, easy to use, and was capable of consistent performance over tens of analyses including minute amounts of complex cellular lysates.

Download full-text


Available from: Shabaz Mohammed
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mass spectrometry has emerged as an invaluable technique with a wide array of applications ranging from clinical to biodefense. With the development of different ionization techniques and mass analyzers, even challenging samples can be analyzed, thereby making mass spectrometry an important analytical tool in the field of biophysics. Mass spectrometry is the only technique that offers the combination of high sensitivity (attomole) with structural information. While other analytical techniques may provide higher sensitivity, these techniques do not provide structural information. Conversely, other techniques may provide more complete structures but have significantly less sensitivity. The different ionization techniques allow for the examination of analytes ranging from small metabolites to large macromolecular assemblies. In this chapter the major components are described rather than the possible applications, which would require volumes. With the major concepts in hand, the student is encouraged to read specific reviews regarding the kinds of applications of interest to the researcher.
    No preview · Article ·
  • [Show abstract] [Hide abstract]
    ABSTRACT: An overview of the literature regarding the most recent and innovative developments in microfluidic devices for pressure-driven chromatographic separations is given, with a focus on proteomics and metabolomics applications. The applications can be considered as the main driving force for the developments in this research field, since they put high demands on the analytical technology such as for throughput, efficiency, and sensitivity and for the possibilities to interface with mass spectrometry. The developments are evaluated based on the feasibility for use in work flows for the analysis of biologically relevant samples. The literature up to the first half of 2011 is covered. Electrophoretic separations are not within the scope of this review. Several strategies have been described to obtain a retentive phase in microfluidic channels. Open channels with the stationary phase bound to the walls appear to be relatively easy to make. However, the retention in such channels is generally very low for separations of relevant samples. Microfabrication of perfectly ordered topographic structures is the most innovative of the methods discussed for the creation of stationary phases in narrow channels. Several groups work on the improvement of the surface-to-volume ratio in such channels, using different methods, and the developments towards real applications are promising. Channels packed with spherical particles and in situ polymerized monoliths for pressure-driven separations are the most frequently applied. Microfluidic devices with an integrated injection system, a (packed) separation column and a spray tip for coupling to a mass spectrometer are already commercially available, and used in practice in proteomics and metabolomics. Finally, the inherent advantages of microfluidic devices for multidimensional separations have been shown in practice in a number of studies. In these studies, pressure-driven chromatography is coupled (in series or multiplexed) to an electrophoretic separation method. The high peak capacity of such 2-dimensional separations has been shown.
    No preview · Article · Nov 2012 · Chromatographia
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the developing embryo, as in many other biological processes, complex signaling pathways are under tight control of reversible phosphorylation, guiding cell proliferation, differentiation, and growth. Therefore the large-scale identification of signaling proteins and their post-translational modifications is crucial to understand the proteome biology of the developing zebrafish embryo. Here, we used an automated, robust, and sensitive online TiO 2-based LC-MS/MS setup to enrich for phosphorylated peptides from 1 day old zebrafish embryos. We identified, with high confidence, 1067 endogenous phosphorylation sites in a sample taken from 60 embryos (approximately 180 microg), 321 from 10 embryos, and 47 phosphorylation sites from a single embryo, illustrating the sensitivity of the method. This data set, representing by far the largest for zebrafish, was further exploited by searching for serine/threonine or tyrosine kinase motifs using Scansite. For one-third of the identified phosphopeptides a potential kinase motif could be predicted, where it appeared that Cdk5 kinase, p38MAPK, PKA, and Casein Kinase 2 substrates were the most predominant motifs present, underpinning the importance of these kinases in signaling pathways in embryonic development. The phosphopeptide data set was further interrogated using alignments with phosphopeptides identified in recent large-scale phosphoproteomics screens in human and mouse samples. These alignments revealed conservation of phosphorylation sites in several proteins suggesting preserved function in embryonic development.
    No preview · Article · May 2008 · Journal of Proteome Research
Show more