Integration of Gene Dosage and Gene Expression in Non-Small Cell Lung Cancer, Identification of HSP90 as Potential Target

Ohio State University, United States of America
PLoS ONE (Impact Factor: 3.23). 02/2008; 3(3):e0001722. DOI: 10.1371/journal.pone.0001722
Source: PubMed


Lung cancer causes approximately 1.2 million deaths per year worldwide, and non-small cell lung cancer (NSCLC) represents 85% of all lung cancers. Understanding the molecular events in non-small cell lung cancer (NSCLC) is essential to improve early diagnosis and treatment for this disease.
In an attempt to identify novel NSCLC related genes, we performed a genome-wide screening of chromosomal copy number changes affecting gene expression using microarray based comparative genomic hybridization and gene expression arrays on 32 radically resected tumor samples from stage I and II NSCLC patients. An integrative analysis tool was applied to determine whether chromosomal copy number affects gene expression. We identified a deletion on 14q32.2-33 as a common alteration in NSCLC (44%), which significantly influenced gene expression for HSP90, residing on 14q32. This deletion was correlated with better overall survival (P = 0.008), survival was also longer in patients whose tumors had low expression levels of HSP90. We extended the analysis to three independent validation sets of NSCLC patients, and confirmed low HSP90 expression to be related with longer overall survival (P = 0.003, P = 0.07 and P = 0.04). Furthermore, in vitro treatment with an HSP90 inhibitor had potent antiproliferative activity in NSCLC cell lines.
We suggest that targeting HSP90 will have clinical impact for NSCLC patients.

Download full-text


Available from: Nico van Zandwijk
  • Source
    • "In addition, other hormone receptors, such as androgen receptor, utilized HSP90, which provides a rationale for the use of HSP90 inhibitors and AR antagonist in the subset of AR+ breast cancers. Given the fact that HSP90 is one of the most abundant proteins in breast cancer cells, and HSP90 has been proposed as a potential therapeutic target for other cancers, including non-small cell lung cancer [42], our results indicate that HSP90 is an important oncogenic signaling node in breast cancer, whose high expression is associated with aggressive behavior and poor prognosis of breast cancer. Diagnostic and therapeutic strategies directed to cancer expressing high levels of HSP90 are warranted. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Although human epidermal growth factor receptor 2 (HER2) positive or estrogen receptor (ER) positive breast cancers are treated with clinically validated anti-HER2 or anti-estrogen therapies, intrinsic and acquired resistance to these therapies appears in a substantial proportion of breast cancer patients and new therapies are needed. Identification of additional molecular factors, especially those characterized by aggressive behavior and poor prognosis, could prioritize interventional opportunities to improve the diagnosis and treatment of breast cancer. We compiled a collection of 4,010 breast tumor gene expression data derived from 23 datasets that have been posted on the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database. We performed a genome-scale survival analysis using Cox-regression survival analyses, and validated using Kaplan-Meier Estimates survival and Cox Proportional-Hazards Regression survival analyses. We conducted a genome-scale analysis of chromosome alteration using 481 breast cancer samples obtained from The Cancer Genome Atlas (TCGA), from which combined expression and copy number data were available. We assessed the correlation between somatic copy number alterations and gene expression using analysis of variance (ANOVA). Increased expression of each of the heat shock protein (HSP) 90 isoforms, as well as HSP transcriptional factor 1 (HSF1), was correlated with poor prognosis in different subtypes of breast cancer. High-level expression of HSP90AA1 and HSP90AB1, two cytoplasmic HSP90 isoforms, was driven by chromosome coding region amplifications and were independent factors that led to death from breast cancer among patients with triple-negative (TNBC) and HER2-/ER+ subtypes, respectively. Furthermore, amplification of HSF1 was correlated with higher HSP90AA1 and HSP90AB1 mRNA expression among the breast cancer cells without amplifications of these two genes. A collection of HSP90AA1, HSP90AB1 and HSF1 amplifications defined a subpopulation of breast cancer with up-regulated HSP90 gene expression, and up-regulated HSP90 expression independently elevated the risk of recurrence of TNBC and poor prognosis of HER2-/ER+ breast cancer. Up-regulated HSP90 mRNA expression represents a confluence of genomic vulnerability that renders HER2 negative breast cancers more aggressive, resulting in poor prognosis. Targeting breast cancer with up-regulated HSP90 may potentially improve the effectiveness of clinical intervention in this disease.
    Full-text · Article · Apr 2012 · Breast cancer research: BCR
  • Source
    • "It controls cell cycle progression by simulating G1/S transition and may result in loss of cell cycle arrest and uncontrolled tumor growth when dysfunctional [47]. Other identified significant proteins such as AR, ESR1, SRC, FYN, YWHAQ, YWHAZ, and HSP90AA1 were also shown to contribute to the process of carcinogenesis [48-54]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Lung cancer is the leading cause of cancer deaths worldwide. Many studies have investigated the carcinogenic process and identified the biomarkers for signature classification. However, based on the research dedicated to this field, there is no highly sensitive network-based method for carcinogenesis characterization and diagnosis from the systems perspective. In this study, a systems biology approach integrating microarray gene expression profiles and protein-protein interaction information was proposed to develop a network-based biomarker for molecular investigation into the network mechanism of lung carcinogenesis and diagnosis of lung cancer. The network-based biomarker consists of two protein association networks constructed for cancer samples and non-cancer samples. Based on the network-based biomarker, a total of 40 significant proteins in lung carcinogenesis were identified with carcinogenesis relevance values (CRVs). In addition, the network-based biomarker, acting as the screening test, proved to be effective in diagnosing smokers with signs of lung cancer. A network-based biomarker using constructed protein association networks is a useful tool to highlight the pathways and mechanisms of the lung carcinogenic process and, more importantly, provides potential therapeutic targets to combat cancer.
    Preview · Article · Jan 2011 · BMC Medical Genomics
  • Source

    Full-text · Article · Sep 2008 · Annals of Oncology
Show more