Cyclic GMP in the pig vitreous and retina after experimental retinal detachment

Eye Research Institute Maastricht, Department of Ophthalmology, University Hospital Maastricht, The Netherlands.
Molecular vision (Impact Factor: 1.99). 02/2008; 14:255-61.
Source: PubMed


Earlier studies have revealed a decreased level of cGMP in vitreous fluid obtained from patients with a retinal detachment. To further investigate this phenomenon, we developed an experimental retinal detachment model in pigs.
Experimental unilateral retinal detachments were induced in pig eyes by subretinal injection of 0.25% sodium hyaluronate. Fourteen days later the vitreous and retinas were analyzed for cGMP expression. Following enucleation, the retinas were incubated in the presence of a nonselective phosphodiesterase inhibitor (IBMX), and the particulate guanylyl cyclase stimulator atrial natriuretic peptide (ANP) or the soluble guanylyl cyclase stimulator sodium nitroprusside (SNP). cGMP was visualized in retinal wholemounts by immunochemistry combined with a computer based stereology system. cGMP levels in vitreous were determined by ELISA.
The mean vitreous cGMP level in pig eyes with a retinal detachment (1.45 pmol/ml) was significantly lower compared to the mean level of cGMP in healthy pig eyes (4.61 pmol/ml; p=0.028 was considered significant). In the inner retina, ANP as well as SNP induced cGMP immunoreactivity in both detached and healthy retinas. After incubation with ANP, cGMP could also be detected in the outer nuclear layer of the detached retina, whereas this was not the case in the normal retina.
Experimental retinal detachment in the pig eye leads to a decrease of cGMP levels in vitreous similar to that observed in clinical studies. This model may be helpful to analyze the mechanisms involved in cGMP dynamics following retinal detachment.

Download full-text


Available from: PubMed Central · License: CC BY
  • [Show abstract] [Hide abstract]
    ABSTRACT: The adult differentiated insulin-secreting pancreatic islet beta-cell experiences slow growth. This study shows that atrial natriuretic peptide (ANP) stimulates cell proliferation and [(3)H]thymidine incorporation in INS-1E glucose-sensitive rat beta-cell line cells and isolated rat islet DNA. In addition, cGMP, the second messenger of natriuretic peptide receptors (NPR) A and B, stimulated islet DNA biosynthesis. The NPR-A receptor was expressed in INS-1E cells and islets. ANP-stimulated INS-1E cell DNA biosynthesis was blocked by preincubation with LY294002 (50 microM), an inhibitor of phosphatidylinositol 3'-kinase (PI3K). An indicator of cell cycle progression, cyclin D2 mRNA was increased by 2- to 3-fold in ANP- or 8-Br-cGMP-treated INS-1E cells and islets, and these responses were inhibited by LY294002. ANP and 8-Br-cGMP stimulated the phosphorylation of Akt and Foxo1a in INS-1E cells and islets, and LY294002 inhibited these responses. In contrast, ANP reduced the levels of phospho-ERK in INS-1E cells. Pancreas duodenum homeobox-1 (PDX-1) is essential for pancreas development, insulin production, and glucose homeostasis, and ANP increased PDX-1 mRNA levels by 2- to 3-fold in INS-1E cells and islets. The levels of glucokinase mRNA in islets and INS-1E cells were also increased in response to ANP. The evidence suggests that pancreatic beta-cell NPR-A stimulation results in activation of a growth-promoting signaling pathway that includes PI3K/Akt/Foxo1a/cyclin D2. These data support the conclusion that the activation of Akt by ANP or 8-Br-cGMP promotes cyclin D2, PDX-1, and glucokinase transcription by phosphorylating and restricting Foxo1a activity.
    No preview · Article · Oct 2009 · Endocrinology
  • [Show abstract] [Hide abstract]
    ABSTRACT: The retinal pigment epithelium (RPE) expresses aquaporin-1 (AQP1) and components of the natriuretic peptide signaling pathway. We hypothesized that stimulation of the natriuretic signaling pathway in RPE with atrial natriuretic peptide (ANP) and with membrane-permeable analogs of cGMP would induce a net apical-to-basal transport of fluid. The hypothesis was tested using human RPE cultures that retain properties seen in vivo. Confluent monolayers were treated with ANP or membrane-permeable cGMP analogs in the presence of anantin, H-8, and an AQP1 inhibitor, AqB013. Fluid movement from the apical to basal chambers was measured by weight and used to calculate net fluid transport. Our results demonstrated a 40% increase in net apical-to-basal fluid transport by ANP (5 μM) that was inhibited completely by the ANP receptor antagonist anantin and a 60% increase in net apical-to-basal fluid transport in response to the extracellularly applied membrane-permeable cGMP analog pCPT-cGMP (50 μM), which was not affected by the protein kinase G inhibitor H-8. The aquaporin antagonist AqB013 (20 μM) inhibited the cGMP-stimulated RPE fluid flux. The effect of cGMP is consistent with an enhancement of the net fluid flux in RPE mediated by AQP1 channels. Pharmacologic activation of cGMP signaling and concomitant stimulation of fluid uptake from the subretinal space could offer insights into a new approach to treating or reducing the risk of retinal detachment.
    No preview · Article · Mar 2012 · Investigative ophthalmology & visual science