LRRK2 R1441C Parkinsonism is clinically similar to sporadic Parkinson disease

University of Barcelona, Barcino, Catalonia, Spain
Neurology (Impact Factor: 8.29). 04/2008; 70(16 Pt 2):1456-60. DOI: 10.1212/01.wnl.0000304044.22253.03
Source: PubMed


Leucine-rich repeat kinase 2 (LRRK2) mutations are the most common cause of Parkinson disease (PD). Several dominantly inherited pathogenic substitutions have been identified in different domains of the Lrrk2 protein. Herein, we characterize the clinical and genetic features associated with Lrrk2 p.R1441C.
We identified 33 affected and 15 unaffected LRRK2 c.4321C>T (p.R1441C) mutation carriers through an international consortium originating from three continents. The age-specific cumulative incidence of PD was calculated by Kaplan-Meier analysis.
The clinical presentation of Lrrk2 p.R1441C carriers was similar to sporadic PD and Lrrk2 p.G2019S parkinsonism. The mean age at onset for parkinsonism was 60 years, range 30-79 years; fewer than 20% of the patients had symptoms before the age 50 years, while by 75 years >90% of them had developed symptoms. Haplotype analysis suggests four independent founders for the p.R1441C mutation.
The distribution in age at onset and clinical features in Lrrk2 p.R1441C patients are similar to idiopathic and Lrrk2 p.G2019S parkinsonism. Several independent founders of the p.R1441C substitution suggest this site is prone to recurrent mutagenesis.

Download full-text


Available from: Kristoffer Haugarvoll
  • Source
    • "Genome-wide association studies have also identified LRRK2 as a risk factor for sporadic PD (Satake et al., 2009; Simon-Sanchez et al., 2009; Ross et al., 2011; Lill et al., 2012). The informative nature of PD causing mutations on the molecular basis of disease is demonstrated by LRRK2, because clinical phenotypes of PD caused by LRRK2 mutation are largely indistinguishable from idiopathic disease (Ishihara et al., 2006; Ross et al., 2006; Haugarvoll et al., 2008; Haugarvoll and Wszolek, 2009), however ascertainment of larger LRRK2 Gly2019Ser patient populations will certainly define distinct clinical and pathologic features of LRRK2 parkinsonism (Zimprich et al., 2004; Adams et al., 2005; Whaley et al., 2006; Sossi et al., 2010). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Missense mutations in the Leucine Rich Repeat protein Kinase 2 (LRRK2) gene are the most common genetic predisposition to develop Parkinson’s disease (PD) LRRK2 is a large multi-domain phosphoprotein with a GTPase domain and a serine/threonine protein kinase domain whose activity is implicated in neuronal toxicity; however the precise mechanism is unknown. LRRK2 autophosphorylates on several serine/threonine residues across the enzyme and is found constitutively phosphorylated on Ser910, Ser935, Ser955 and Ser973, which are proposed to be regulated by upstream kinases. Here we investigate the phosphoregulation at these sites by analyzing the effects of disease-associated mutations Arg1441Cys, Arg1441Gly, Ala1442Pro, Tyr1699Cys, Ile2012Thr, Gly2019Ser, and Ile2020Thr. We also studied alanine substitutions of phosphosite serines 910, 935, 955 and 973 and specific LRRK2 inhibition on autophosphorylation of LRRK2 Ser1292, Thr1491, Thr2483 and phosphorylation at the cellular sites. We found that mutants in the Roc-COR domains, including Arg1441Cys, Arg1441His, Ala1442Pro and Tyr1699Cys, can positively enhance LRRK2 kinase activity while concomitantly inducing the dephosphorylation of the cellular sites. Mutation of the cellular sites individually did not affect LRRK2 intrinsic kinase activity; however, Ser910/935/955/973Ala mutations trended toward increased kinase activity of LRRK2. Increased cAMP levels did not lead to increased LRRK2 cellular site phosphorylation, 14-3-3 binding or kinase activity. In cells, inhibition of LRRK2 kinase activity leads to dephosphorylation of Ser1292 by Calyculin A and okadaic acid sensitive phosphatases, while the cellular sites are dephosphorylated by Calyculin A sensitive phosphatases. These findings indicate that comparative analysis of both Ser1292 and Ser910/935/955/973 phosphorylation sites will provide important and distinct measures of LRRK2 kinase and biological activity in vitro and in vivo.
    Full-text · Article · Jun 2014 · Frontiers in Molecular Neuroscience
  • Source
    • "Several mutations in LRRK2 clearly segregate with the disease, and, importantly, these mutations cluster within the two catalytic domains, suggesting that a change in enzymatic functions (GTPase and/or kinase) may mediate the pathogenic effects of LRRK2 [6]. R1441G/C/H mutations map to the ROC domain [4,7,8], Y1669C to the COR domain [1], and I2020T and G2019S mutations to the kinase domain [9,10]. In this frame, the G2019S mutation is by far the most common pathogenic LRRK2 mutation, and is responsible for more than 10% of familial PD cases and 1 to 2% of sporadic PD cases [11]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: It is now well established that chronic inflammation is a prominent feature of several neurodegenerative disorders including Parkinson's disease (PD). Growing evidence indicates that neuroinflammation can contribute greatly to dopaminergic neuron degeneration and progression of the disease. Recent literature highlights that leucine-rich repeat kinase 2 (LRRK2), a kinase mutated in both autosomal-dominantly inherited and sporadic PD cases, modulates inflammation in response to different pathological stimuli. In this review, we outline the state of the art of LRRK2 functions in microglia cells and in neuroinflammation. Furthermore, we discuss the potential role of LRRK2 in cytoskeleton remodeling and vesicle trafficking in microglia cells under physiological and pathological conditions. We also hypothesize that LRRK2 mutations might sensitize microglia cells toward a pro-inflammatory state, which in turn results in exacerbated inflammation with consequent neurodegeneration.
    Full-text · Article · Mar 2014 · Journal of Neuroinflammation
  • Source
    • "The penetrance of the LRRK2 mutation is age-dependent, but it is quite different according to mutations. The penetrance seems incomplete in the mutation of G2019S, which was reported at 28% at the age of 59 years, 51% at 69, 74% at age 79, and more than 90% at the age of 75 in R1441C.69,70 It also appears to be varied between the ethnicities and is higher in Arab Berber than Ashkenazi Jews.71,72 "
    [Show abstract] [Hide abstract]
    ABSTRACT: Discovering genes following Medelian inheritance, such as autosomal dominant-synuclein and leucine-rich repeat kinase 2 gene, or autosomal recessive Parkin, P-TEN-induced putative kinase 1 gene and Daisuke-Junko 1 gene, has provided great insights into the pathogenesis of Parkinson's disease (PD). Genes found to be associated with PD through investigating genetic polymorphisms or via the whole genome association studies suggest that such genes could also contribute to an increased risk of PD in the general population. Some environmental factors have been found to be associated with genetic factors in at-risk patients, further implicating the role of gene-environment interactions in sporadic PD. There may be confusion for clinicians facing rapid progresses of genetic understanding in PD. After a brief review of PD genetics, we will discuss the insight of new genetic discoveries to clinicians, the implications of ethnic differences in PD genetics and the role of genetic testing for general clinicians managing PD patients.
    Full-text · Article · Oct 2012
Show more