Insulin-Like Growth Factor II Activates Phosphatidylinositol 3-Kinase-Protooncogenic Protein Kinase 1 and Mitogen-Activated Protein Kinase Cell Signaling Pathways, and Stimulates Migration of Ovine Trophectoderm Cells

Center for Animal Biotechnology and Genomics, Department of Animal Science, Texas A&M University, College Station, Texas 77843-2471, USA.
Endocrinology (Impact Factor: 4.5). 07/2008; 149(6):3085-94. DOI: 10.1210/en.2007-1367
Source: PubMed


IGF-II, a potent stimulator of cellular proliferation, differentiation, and development, regulates uterine function and conceptus growth in several species. In situ hybridization analyses found that IGF-II mRNA was most abundant in the caruncular endometrial stroma of both cyclical and pregnant ewes. In the intercaruncular endometrium, IGF-II mRNA transitioned from stroma to luminal epithelium between d 14 and 20 of pregnancy. IGF-II mRNA was present in all cells of the conceptus but was particularly abundant in the yolk sac. Immunohistochemical analyses revealed that phosphorylated (p)-protooncogenic protein kinase 1, p-ribosomal protein S6 kinase, p-ERK1/2, and p-P38 MAPK proteins were present at low levels in a majority of endometrial cells but were most abundant in the nuclei of endometrial luminal epithelium and conceptus trophectoderm of pregnant ewes. In mononuclear trophectoderm cells isolated from d-15 conceptuses, IGF-II increased the abundance of p-pyruvate dehydrogenase kinase 1, p-protooncogenic protein kinase 1, p-glycogen synthase kinase 3B, p-FK506 binding protein 12-rapamycin associated protein 1, and p-ribosomal protein S6 kinase protein within 15 min, and the increase was maintained for 90 min. IGF-II also elicited a rapid increase in p-ERK1/2 and p-P38 MAPK proteins that was maximal at 15 or 30 min posttreatment. Moreover, IGF-II increased migration of trophectoderm cells. Collectively, these results support the hypothesis that IGF-II coordinately activates multiple cell signaling pathways critical to survival, growth, and differentiation of the ovine conceptus during early pregnancy.

  • Source
    • "The maternally imprinted insulin-like growth factor II (IGF-II) gene on bovine chromosome 29 is one of the best characterized epigenetically regulated loci (Goodall & Schmutz, 2003; Gebert et al., 2009). Insulinlike growth factors have been shown to play important roles in early embryonic (Rappolee et al., 1992; Wang et al., 2009), placental, and fetal development (Sibley et al., 2004; Su et al., 2011), probably through combined activation of multiple cell signaling pathways critical to survival, growth, and differentiation (Kim et al., 2008). In addition, the IGF-II gene provides an excellent model for studying RNA involvement in maintenance of nucleosome-retained regions of the sperm chromatin in spite of nearly complete replacement of DNA-bound histones with protamines (Jenkins & Carrell, 2011). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Summary The effects of the paternal breed on early embryo and later pre- and postnatal development are well documented. Several recent studies have suggested that such paternal effects may be mediated by the paternally induced epigenetic modifications during early embryogenesis. The objective of this study was to investigate the effects of the paternal breed on the early embryonic development and relative expression of the maternally imprinted gene, IGF-II, and the apoptosis-related genes BAK1 and BCL2-L1 in in vitro produced (IVP) bovine embryos derived from two unrelated paternal breeds (Holstein and Brown Swiss). The degree of correlation of IGF-II expression pattern with embryo developmental competence and apoptosis-related genes was also investigated. The relative abundance of IGF-II, BCL2-L1 and BAK1 transcripts in day 8 embryos was measured by quantitative reverse-transcription polymerase chain reaction using the comparative Cp method. Our data revealed that the paternal breed did not influence cleavage rate, blastocyst rate and relative abundance of IGF-II, BAK1 and BCL2-L1 in day 8 blastocysts (P > 0.05). Nevertheless, IGF-II expression levels were highly correlated with embryonic developmental competence (r = 0.66, P < 0.1), relative expression of BCL2-L1 (r = 0.72, P < 0.05) and ratio of BCL2-L1/BAK1 (r = 0.78, P < 0.05). In conclusion, our data show that IGF-II, BCL2-L1 and BAK1 expression is not related to the chosen combination of paternal breed, but that IGF-II expression is correlated with embryonic viability and apoptosis-related gene expression.
    Full-text · Article · Sep 2014 · Zygote
  • Source
    • "Mitogen-activated protein kinases (MAPKs) are highly conserved in most organisms and respond to various extracellular stimuli such as mitogens, heat shock, stress and cytokines [41]. Among the three well-characterized subfamilies of MAPKs, the ERK1/2 MAPK pathway plays important roles in growth and differentiation processes of female reproductive organs during early pregnancy, including embryonic and placental development [42], [43], [44], [45]. However, little is known about the ERK1/2 MAPK signal cascade in growth, development and differentiation of female reproductive tract such as oviduct and uterus. "
    [Show abstract] [Hide abstract]
    ABSTRACT: S-adenosylhomocysteine hydrolase-like protein 1 (AHCYL1), also known as IP(3) receptor-binding protein released with IP(3) (IRBIT), regulates IP(3)-induced Ca(2+) release into the cytoplasm of cells. AHCYL1 is a critical regulator of early developmental stages in zebrafish, but little is known about the function of AHCYL1 or hormonal regulation of expression of the AHCYL1 gene in avian species. Therefore, we investigated differential expression profiles of the AHCYL1 gene in various adult organs and in oviducts from estrogen-treated chickens. Chicken AHCYL1 encodes for a protein of 540 amino acids that is highly conserved and has considerable homology to mammalian AHCYL1 proteins (>94% identity). AHCYL1 mRNA was expressed abundantly in various organs of chickens. Further, the synthetic estrogen agonist induced AHCYL1 mRNA and protein predominantly in luminal and glandular epithelial cells of the chick oviduct. In addition, estrogen activated AHCYL1 through the ERK1/2 signal transduction cascade and that activated expression of AHCYL1 regulated genes affecting oviduct development in chicks as well as calcium release in epithelial cells of the oviduct. Also, microRNAs, miR-124a, miR-1669, miR-1710 and miR-1782 influenced AHCYL1 expression in vitro via its 3'-UTR which suggests that post-transcriptional events are involved in the regulation of AHCYL1 expression in the chick oviduct. In conclusion, these results indicate that AHCYL1 is a novel estrogen-stimulated gene expressed in epithelial cells of the chicken oviduct that likely affects growth, development and calcium metabolism of the mature oviduct of hens via an estrogen-mediated ERK1/2 MAPK cell signaling pathway.
    Full-text · Article · Nov 2012 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to examine the effects of ghrelin on protein kinase B (Akt) and mitogen-activated protein kinase p42/44 (ERK1/2) activation as well as ghrelin effects on inducible nitric oxide (NO) synthase (iNOS; for gene Nos2) activity/expression in rat hearts. Male Wistar rats were treated with ghrelin (0.3nmol/5μl) or an equal volume of phosphate-buffered saline, injected every 24h into the lateral cerebral ventricle for 5days and 2h after the last treatment the animals were sacrificed. Serum NO, l-arginine (l-Arg), and arginase activity were measured spectrophotometrically. For phosphorylation of Akt, ERK1/2, and iNOS protein expression, Western blot method was used. The expression of Nos2 mRNA was measured by the quantitative real-time polymerase chain reaction (qRT-PCR). Treatment with ghrelin significantly increased NO production in serum by 1.4-fold compared with control. The concentration of l-Arg was significantly higher in ghrelin-treated rats than in control while arginase activity was significantly lower in ghrelin-treated than in control hearts. Ghrelin treatment increased phosphorylation of Akt by 1.9-fold and ERK1/2 by 1.6-fold and increased iNOS expression by 2.5-fold compared with control. In addition, ghrelin treatment increased Nos2 gene expression by 2.2-fold as determined by qRT-PCR. These results indicate that ghrelin regulation of iNOS expression/activity is mediated via Akt/ERK1/2 signaling pathway. These results may be relevant to understanding molecular mechanisms underlying direct cardiovascular actions of ghrelin. KeywordsGhrelin–Nitric oxide synthase–Akt–ERK1/2
    Full-text · Article · Jun 2011 · Journal of physiology and biochemistry
Show more

We use cookies to give you the best possible experience on ResearchGate. Read our cookies policy to learn more.