Highly Sensitive and Stable Humidity Nanosensors Based on LiCl Doped TiO2 Electrospun Nanofibers

Article (PDF Available)inJournal of the American Chemical Society 130(15):5036-7 · May 2008with450 Reads
DOI: 10.1021/ja800176s · Source: PubMed
A new type of humidity nanosensor based on LiCl-doped TiO2 nanofibers with poly(vinyl pyrrolidone) (PVP) nanofibers as sacrificial template has been fabricated through electrospinning and calcination. The sensor exhibited excellent sensing characteristics, such as ultrafast response and recovery times, good reproducibility, linearity, and environmental stability, which are of importance for applications in humidity monitoring and control.
Highly Sensitive and Stable Humidity Nanosensors Based on
LiCl Doped TiO
Electrospun Nanofibers
Zhenyu Li,
Hongnan Zhang,
Wei Zheng,
Wei Wang,
Huimin Huang,
Ce Wang,*
Alan G. MacDiarmid,
and Yen Wei
Alan G. MacDiarmid Institute, Jilin UniVersity, Chang Chun 130012, PR China, and
Department of Chemistry, Drexel UniVersity, Philadelphia, PennsylVania 19104
Received January 19, 2008; E-mail: cwang@jlu.edu.cn
Design and fabrication of chemical sensors has become one
of the most active research fields due to their diverse practical
and potential applications.
To improve the sensing character-
istics, a general route is to make chemical sensors at the
nanoscale, taking advantage of the large surface areas of
nanoscale structures.
Chemical nanosensors based on one-
dimensional (1D) carbon,
and ceramic
are of particular interest because of their high surface to volume
ratio and special physical and chemical properties.
Among the
chemical nanosensors, the humidity nanosensor is very important
for their practical applications in environment monitoring,
industrial process control, and our daily life.
Many humidity
nanosensors based on 1D nanostructure have been successfully
obtained. However, the sensing characteristics (e.g., response,
recovery, reproducibility, stability, and linearity) still need to
be improved.
is an important ceramic material with a variety of
applications in environmental cleaning and protection, photo-
catalysis, sensors, and solar cells.
These excellent properties
make TiO
a good candidate in fabricating humidity nanosen-
sors. On the other hand, LiCl has been often used in fabricating
humidity sensors.
In this communication, we report a new type
of humidity nanosensors based on LiCl-doped TiO
nanofibers using the electrospinning technique
and calcination.
The as-prepared humidity sensor exhibits excellent sensing
characteristics, including ultrafast response time (e3s)and
recovery time (e7 s) for measuring relative humidity (RH) in
a wide range of 11-95% in air at room temperature (25 °C)
with the impendence changing from 10
to 10
. In addition,
the nanosensor has good reproducibility, linearity, and stability.
Thus, a solution of tetrabutyltitanate, LiCl, and poly(vinyl
pyrrolidone) (PVP) in acetic acid and ethanol was electrospun
into nanofibers followed by calcination to remove PVP and to
afford LiCl-doped TiO
nanofibers as the humidity sensors. The
experimental details (Scheme S1) and schematic steps (Scheme
S2) are given in Supporting Information. Figure 1 shows the
SEM images of the electrospun TiO
nanofibers containing
different amounts of LiCl, indicating a large scale of product
uniformity with the fiber diameters ranging from 150 to 260
nm. The corresponding XRD patterns (inset in Figure 1d)
demonstrate that the structure of TiO
changes from pure anatase
to a mixture of anatase and rutile and to pure rutile as the amount
of LiCl is increased. This result reveals that the addition of LiCl
can change the structures of TiO
nanofibers upon calcination.
The impedance of the nanosensor has been measured at
different frequencies at 25 °C. The results, as shown in Figure
S1 in Supporting Information, indicate that the high humidity
sensitivity and good linearity in the entire RH range were
obtained in the low frequency region of 20-100 Hz. At higher
frequencies, the dielectric phenomenon did not appear because
the adsorbed water molecules could not be polarized. Therefore,
we kept the operation AC voltage and frequency at 1 V and
100 Hz, respectively, in the following experiments.
The dependence of impedance on the RH for TiO
containing different amounts of LiCl is shown in Figure 2a.
Compared to the pure TiO
nanofibers, LiCl-doped TiO
nanofibers exhibited greatly improved sensitivity. In the same
time, by keeping the RH range of 11–95%, the humidity
nanosensor containing 30.0% LiCl shows the best linearity with
the impedance varying more than 3 orders of magnitude
Jilin University.
Drexel University.
Figure 1. SEM images of the TiO
nanofibers containing different contents
of LiCl. The contents of (a), (b), (c), and (d) are 12.5, 22.2, 30.0, and 36.4%,
respectively. The inset in (d) is XRD patterns of the products.
Figure 2. (a) The dependence of impedance on the RH for TiO
containing different contents of LiCl. (b) The humidity hysteresis charac-
teristics of the as-prepared humidity nanosensors containing 30.0% LiCl.
The AC voltage and the frequency are 1 V and 100 Hz, respectively.
Published on Web 03/15/2008
10.1021/ja800176s CCC: $40.75 2008 American Chemical Society5036
J. AM. CHEM. SOC. 2008, 130, 5036–5037
). Figure 2b shows the humidity hysteresis char
acteristic of the as-prepared humidity nanosensors (30.0% LiCl).
The lines for adsorption and desorption processes are very close
to the maximum humidity hysteresis being less than 2.5% RH
under 65% RH for our nanosensors.
The response and recovery behavior is an important charac-
teristic for evaluating the performance of humidity sensors.
Figure 3a,b shows the response and recovery characteristic
curves based on the product containing 30.0% LiCl-doped TiO
nanofibers for 1 cycle and 10 cycles with the RH changing from
11 to 95%. When the humidity was increased from 11 to 95%,
the response time for our sensor was less than 3 s. When the
RH was decreased from 95 to 11%, the recovery time was less
than 7 s. Such an ultrafast response and recovery behavior could
be explained by the structures of 1D TiO
nanofibers. The large
surface of the nanofiber makes the absorption of water molecules
on the surface of our sensors easy. The 1D structure of the fibers
can facilitate fast mass transfer of the water molecules to and
from the interaction region as well as improve the rate for charge
carriers to transverse the barriers induced by molecular recogni-
tion along the fibers.
Additionally, comparing with 2D
nanoscale films, the interfacial areas between the active sensing
region of the nanofibers and the underlying substrate is greatly
reduced. Those advantages lead to significant gain in the sensing
signal and good stability.
From the curves for 10 cycles, the
highest and lowest impedance values varied little, suggesting
that the as-prepared humidity nanosensors have good reproduc-
ibility. (More descriptions on basic humidity sensing principles
are given in Figure S2 in Supporting Information.) To test the
stability, the sensor containing 30.0% LiCl was exposed in air
for 30 days followed by measuring impedances at various RHs.
As shown in Figure 3c, there were almost no changes in the
impedances, which directly confirms the good stability of our
sensors. From the criteria as discussed above, our humidity
nanosensors based on LiCl-doped TiO
nanofibers surpass all
the previous humidity sensors reported in the literature.
In summary, we reported a highly sensitive and stable
humidity nanosensor based on LiCl-doped TiO
through electrospinning and calcination techniques. The sensor
exhibited excellent characteristics (ultrafast response and re-
covery behavior, good reproducibility, linearity, and stability),
which are of great importance in humidity detection and control.
Moreover, our method provides a useful platform to design and
construct highly effective humidity nanodetectors.
Acknowledgment. The authors thank the deceased Noble
Prize winner Prof. A. G. MacDiarmid for his guidance in the
field of humidity nanosensor. This work has been supported by
the National 973 project (No. 2007CD936203), National 863
project (No. 2007AA03z324), Headwaters Nanokinetic. Inc.,
and NIH (No. DE09848). Dedicated to the memory of Professor
Alan G. MacDiarmid.
Supporting Information Available: Experimental details, sche-
matic steps for product, impedance dependence of RH at various
frequencies, improving properties of LiCl, and the humidity sensing
principles based on our products. This material is available free of
charge via the Internet at http://pubs.acs.org.
(1) (a) Zampolli, S.; Elmi, I.; Ahmed, F.; Passini, M.; Cardinali, G. C.; Nicoletti,
S.; Dori, L. Sens. Actuators, B 2005, 105, 400–406. (b) Ehrmann, S.; Jungst,
J.; Goschnick, J.; Everhard, D. Sens. Actuators, B 2000, 65, 247–249. (c)
Lee, D. D.; Lee, D. K. IEEE Sens. J. 2001, 1, 214–224. (d) Tomchenko,
A. A.; Harmer, G. P.; Marquis, B. T. Sens. Actuators, B 2005, 108, 41–55.
(2) (a) Franke, M. E.; Koplin, T. J.; Simon, U. Small 2006, 2, 36–50. (b)
Shimizu, Y.; Hyodo, T.; Egashira, M. Catal. SurV. Asia 2004, 8, 127–135.
(c) Liu, S. Q.; Chen, A. C. Langmuir 2005, 21, 8409–8413. (d) Kwon,
T. H.; Ryu, J. Y.; Choi, W. C.; Kim, S. W.; Park, S. H.; Choi, H. H.; Lee,
M. K. Sens. Mater. 1999, 11, 257–267. (e) Comini, E. Anal. Chim. Acta
2006, 568, 28–40. (f) Eranna, G.; Joshi, B. C.; Runthala, D. P.; Gupta,
R. P. Crit. ReV. Solid State Mater. Sci. 2004, 29, 111–188.
(3) (a) Kong, J.; Franklin, N. R.; Zhou, C. W.; Chapline, M. G.; Peng, S.;
Cho, K. J. Science 2000, 287, 622–625. (b) Qi, P.; Vermesh, O.; Grecu,
M.; Javey, A.; Wang, Q.; Dai, H.; Peng, S.; Cho, K. J. Nano Lett. 2003, 3,
(4) (a) Cui, Y.; Wei, Q.; Park, H.; Lieber, C. M. Science 2001, 293, 1289–
1292. (b) Patolsky, F.; Zheng, G.; Hayden, O.; Lakadamyali, M.; Zhuang,
X.; Lieber, C. M. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 14017–14022.
(c) Zheng, G.; Patolsky, F.; Cui, Y.; Cui, Y.; Wang, W. U.; Lieber, C. M.
Nat. Biotechnol. 2005, 23, 1294–1301.
(5) (a) Kim, I.; Rothschild, A.; Lee, B. H.; Kim, D. Y.; Jo, S. M.; Tuller,
H. L. Nano Lett. 2006, 6, 2009–2013. (b) Kolmakov, A.; Moskovits, M.
Annu. ReV. Mater. Res. 2004, 34, 151–180. (c) Law, M.; Kind, H.; Messer,
B.; Kim, F.; Yang, P. Angew. Chem., Int. Ed. 2002, 41, 2405–2408. (d)
Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Science 2001, 291, 1947–1949. (e)
Varghese, O. K.; Gong, D.; Paulose, M.; Ong, K. G.; Dickey, E. C.; Grimes,
C. A. AdV. Mater. 2003, 15, 624–627. (f) Kolmakov, A.; Zhang, Y.; Cheng,
G.; Moskovits, M. AdV. Mater. 2003, 15, 997–1000. (g) Zhang, D.; Liu,
Z.; Li, C.; Tang, T.; Liu, X.; Han, S.; Lei, B.; Zhou, C. Nano Lett. 2004,
4, 1919–1924. (h) Komakov, A.; Kelnov, D. O.; Lilach, Y.; Stemmer, S.;
Moskovits, M. Nano Lett. 2005, 5, 667–673. (i) Kuang, Q.; Lao, C.; Wang,
Z. L.; Xie, Z.; Zheng, L. J. Am. Chem. Soc. 2007, 129, 6070–6071.
(6) (a) Wang, Z. L. AdV. Mater. 2000, 12, 1295–1298. (b) Hu, J.; Odom, T. W.;
Lieber, C. M. Acc. Chem. Res. 1999, 32, 435–445. (c) Xia, Y.; Yang, P.;
Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. AdV.
Mater. 2003, 15, 353–389.
(7) (a) Ying, J.; Wan, C.; He, P. Sens. Actuators, B 2000, 62, 165–170. (b)
Jain, M. K.; Bhatnagar, M. C.; Sharma, G. L. Sens. Actuators, B 1999, 55,
180–185. (c) Saha, D.; Giri, R.; Mistry, K. K.; Sengupta, K. Sens. Actuators,
B 2005, 107, 323–331.
(8) For a review, see: Bavykin, D. V.; Friedrich, J. M.; Walsh, F. C. AdV.
Mater. 2006, 18, 2807–2824.
(9) Jain, M. K.; Bhatnagar, M. C.; Sharma, G. L. Sens. Actuators, B 1999, 55,
(10) For reviews, see: (a) Li, D.; Xia, Y. AdV. Mater. 2004, 16, 1151–1170. (b)
Greiner, A.; Wendorff, J. H. Angew. Chem., Int. Ed. 2007, 46, 5670–5703.
(11) Kolmakov, A.; Moskovits, M. Annu. ReV. Mater. Res. 2004, 34, 151–180.
(12) Swager, T. M. Acc. Chem. Res. 1998, 31, 201–207.
Figure 3. Response and recovery characteristic curves based on the product
containing 30.0% LiCl-doped TiO
nanofibers for 1 cycle (a) and 10 cycles
(b). (c) Stability of the sensor after exposing in air for 30 days.
VOL. 130, NO. 15, 2008 5037
    • "Electrospinning is a unique and versatile technique used to fabricate non-woven fabric with nanoscale fibers. Electrospun nanofibers possessing a high surface area are able to be used for many applications, such as biomedical materials, electrode materials, filtration, sensors , etc. [6][7][8][9][10][11][12][13][14]. Because the electrospun non-woven mat possesses many advantages such as high air permeability, high liquid absorption rate, the flexible fitness to the wound site and so on, electrospinning has become one of the most popular technologies to fabricate wound dressings. "
    [Show abstract] [Hide abstract] ABSTRACT: The non-woven wound dressing with core–shell structured fibers was prepared by coaxial electrospinning. The polycaprolactone (PCL) was electrospun as the fiber’s core to provide mechanical strength whereas collagen was fabricated into the shell in order to utilize its good biocompatibility. Simultaneously, the silver nanoparticles (Ag- NPs) as anti-bacterial agent were loaded in the shell whereas the vitamin A palmitate (VA) as healing-promoting drug was encapsulated in the core. Resulting from the fiber’s core–shell structure, the VA released from the core and Ag-NPs present in the shell can endow the dressing both heal-promoting and anti-bacteria ability simultaneously, which can greatly enhance the dressing’s clinical therapeutic effect. The dressing can maintain high swelling ratio of 190% for 3 d indicating its potential application as wet dressing. Furthermore, the dressing’s anti-bacteria ability against Staphylococcus aureus was proved by in vitro anti-bacteria test. The in vitro drug release test showed the sustainable release of VA within 72 h, while the cell attachment showed L929 cells can well attach on the dressing indicating its good biocompatibility. In conclusion, the fabricated nanofibrous dressing possesses multiple functions to benefit wound healing and shows promising potential for clinical application. © 2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
    Article · Apr 2016
    • "4(b), (d) and (f). The maximum humidity hysteresis (H) is calculated using the expression [23]: "
    [Show abstract] [Hide abstract] ABSTRACT: CeO2 is a good humidity sensitive material, which has been widely investigated by using direct current (d.c.) analysis method. In this paper, we used the complex impedance analysis method to analyze CeO2 nanoparticles (NPs). It was found that the impedance as a function of humidity exhibited the best linearity and smallest hysteresis at 1 KHz than the capacitance or resistance did. The complex impedance modulus (|Z|) varied by four orders of magnitude from 3.8 × 107 Ω to 4.3 × 103 Ω in the humidity range of 11–98% RH. The value of the linearity fit correlation (R2) was 0.997. The sensor exhibits a rapid and reversible response characterized by a very small hysteresis (∼2% RH). The response time and recovery time were 10 s and 3 s, respectively. These results further demonstrated promising application of CeO2 as humidity sensor.
    Full-text · Article · Aug 2015
    • "In addition, the electrospinning method is incredibly effective for low-cost mass production with the minimal usage of materials, which makes it the most suitable method for industrial applications on the commercial scale. For these reasons, electrospun NFs have been employed in a diverse range of sensing materials34567891011121314. Possessing a wide bandgap (3.37 eV) with a large exciton energy (60 meV) [15], ZnO NFs-based semiconductors are one of the most promising sensing materials and have been extensively studied for the past several years161718. "
    [Show abstract] [Hide abstract] ABSTRACT: We have fabricated sensors with reduced graphene oxide (RGO) nanosheets (NSs)-loaded ZnO nanofibers (NFs) via an electrospinning method. The RGO NSs-loaded ZnO NFs were comprised of nanograins with an average diameter of 20 nm. Transmission electron microscopy and X-ray diffraction both revealed the presence of RGO NSs in the ZnO NFs. The sensing properties of RGO NSs-loaded ZnO NFs were examined after exposure to various gases, including O2, SO2, NO2, CO, C6H6, and C2H5OH. The sensor responses showed a bell-shaped behavior with respect to the weight ratio of RGO NSs. It is remarkable that our sensors exhibited significantly higher responses than pure ZnO NFs. We propose a novel hybrid sensing mechanism for the drastic improvement in the sensing behavior that is caused by loading RGO NSs into ZnO NFs. This hybrid sensing mechanism combines the resistance modulation of ZnO/ZnO homointerfaces and RGO-NSs/ZnO heterointerfaces in addition to the radial modulation of the surface depletion layer of ZnO NFs. In the heterointerfaces, the creation of local heterojunctions plays a significant role in raising the sensitivity of RGO-loaded ZnO NFs.
    Full-text · Article · Aug 2015
Show more