Murine liver implantation of radiation-induced fibrosarcoma: characterization with MR imaging, microangiography and histopathology

Department of Radiology, University Hospitals, Catholic University of Leuven, Herestraat 49, 3000 Leuven, Belgium.
European Radiology (Impact Factor: 4.01). 07/2008; 18(7):1422-30. DOI: 10.1007/s00330-008-0904-2
Source: PubMed


We sought to establish and characterize a mouse liver tumor model as a platform for preclinical assessment of new diagnostics and therapeutics. Radiation-induced fibrosarcoma (RIF-1) was intrahepatically implanted in 27 C3H/Km mice. Serial in vivo magnetic resonance imaging (MRI) with a clinical 1.5-T-magnet was performed using T1- (T1WI), T2- (T2WI), and diffusion-weighted sequences (DWI), dynamic contrast-enhanced MRI (DCE-MRI), and contrast-enhanced T1WI, and validated with postmortem microangiography and histopathology. Implantation procedure succeeded in 25 mice with 2 deaths from overdosed anesthesia or hypothermia. RIF-1 grew in 21 mice with volume doubling time of 2.55+/-0.88 days and final size of 216.2+/-150.4 mm(3) at day 14. Three mice were found without tumor growth and one only with abdominal seeding. The intrahepatic RIF-1 was hypervascularized with negligible necrosis as shown on MRI, microangiography and histology. On DCE-MRI, maximal initial slope of contrast-time curve and volume transfer constant per unit volume of tissue, K, differed between the tumor and liver with only the former significantly lower in the tumor than in the liver (P<0.05). Liver implantation of RIF-1 in mice proves a feasible and reproducible model and appears promising for use to screen new diagnostics and therapeutics under noninvasive monitoring even with a clinical MRI system.

Download full-text


Available from: Frederik De Keyzer
  • Source
    • "Also, the experimental set-up as well as MRI-technique itself allows imaging using contrast media, scanning the animal for longer periods and allowing repeated imaging series. Finally, MRI does not employ any radiation and, other than ultrasound, is less investigator-dependent [34]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Pancreatic cancer is the fourth leading cause of tumour death in the western world. However, appropriate tumour models are scarce. Here we present a syngeneic murine pancreatic cancer model using 7 Tesla MRI and evaluate its clinical relevance and applicability. 6606PDA murine pancreatic cancer cells were orthotopically injected into the pancreatic head. Liver metastases were induced through splenic injection. Animals were analyzed by MRI three and five weeks following injection. Tumours were detected using T2-weighted high resolution sequences. Tumour volumes were determined by callipers and MRI. Liver metastases were analyzed using gadolinium-EOB-DTPA and T1-weighted 3D-Flash sequences. Tumour blood flow was measured using low molecular gadobutrol and high molecular gadolinium-DTPA. MRI handling and applicability was similar to human systems, resolution as low as 0.1 mm. After 5 weeks tumour volumes differed significantly (p < 0.01) when comparing calliper measurments (n = 5, mean 1065 mm3+/-243 mm3) with MRI (mean 918 mm3+/-193 mm3) with MRI being more precise. Histology (n = 5) confirmed MRI tumour measurements (mean size MRI 38.5 mm2+/-22.8 mm2 versus 32.6 mm2+/-22.6 mm2 (histology), p < 0,0004) with differences due to fixation and processing of specimens. After splenic injection all mice developed liver metastases with a mean of 8 metastases and a mean volume of 173.8 mm3+/-56.7 mm3 after 5 weeks. Lymphnodes were also easily identified. Tumour accumulation of gadobutrol was significantly (p < 0.05) higher than gadolinium-DTPA. All imaging experiments could be done repeatedly to comply with the 3R-principle thus reducing the number of experimental animals. This model permits monitoring of tumour growth and metastasis formation in longitudinal non-invasive high-resolution MR studies including using contrast agents comparable to human pancreatic cancer. This multidisciplinary environment enables radiologists, surgeons and physicians to further improve translational research and therapies of pancreatic cancer.
    Full-text · Article · Jan 2011 · BMC Cancer
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To document tumoricidal events after intravenous administration of a vascular targeting agent combretastatin A-4-phosphate (CA4P) in rodent liver tumors by using multiparametric magnetic resonance imaging (MRI) in correlation with microangiography and histopathology. Thirty rhabdomyosarcomas of 8 to 14 mm in diameter were obtained 16 days after implantation in liver lobes of 15 rats. Using a 1.5T magnet and a 4-channel wrist coil, T2-weighted imaging (T2WI), pre- and postcontrast T1-weighted imaging (T1WI), diffusion-weighted imaging (DWI), and dynamic susceptibility imaging (DSI) with relative blood volume (rBV) and flow (rBF) maps were acquired at baseline, 1 hour, 6 hours, and 48 hours after iv injection of CA4P at 10 mg/kg and vehicle in 9 treated and 6 control rats, respectively. In vivo data including signal intensity (SI), tumor volume, apparent diffusion coefficient (ADC), rBV, and rBF were correlated with ex vivo microangiographic and histopathologic findings. CA4P-treated tumors (n = 18) grew slower than those (n = 12) of controls (P < 0.05), with vascular shutdown evident on CE-T1WI at 1 hour but more prominent at 6 hours. However, enhanced rim occurred in the periphery 48 hours after treatment, indicating neovascularization. ADC map enabled distinction between necrotic and viable tumors. DSI-derived tumoral rBV and rBF decreased significantly at 1 hour through 6 hours and partly recovered at 48 hours. SI-time curve reflected diverse therapeutic responses between tumor and liver. MRI findings were verified by ex vivo techniques. Clinical MRI allowed monitoring of CA4P-related vascular shutdown, necrosis, and neovascularization of liver tumors in rats. Single dose of CA4P seemed insufficient for tumor eradication because of evident peripheral residue and recurrence.
    Full-text · Article · Dec 2008 · Investigative radiology
  • [Show abstract] [Hide abstract]
    ABSTRACT: We seek a noninvasive, functional, radiological imaging method to determine the specificity and sensitivity of an ablative treatment for deeply placed lesions that cannot be directly visualized, in our case phthalocyanine-4 photodynamic therapy (Pc 4-PDT) of brain tumors. In a preliminary study we had expected that micro-positron emission tomography (μPET) would show dramatically reduced if not negligible 18F-FDG activity following Pc 4-PDT; however, our study has not found a statistically significant difference between the imaging of brain tumors in animals that underwent Pc 4-PDT and those that did not. While several magnetic resonance imaging (MRI) pulse sequences also did not discriminate tumors that had received treatment, our study of dynamic contrast enhancement magnetic resonance imaging (DCE-MRI) was able to discriminate tumors that had undergone necrosis following Pc 4-PDT. We expect that in addition to imaging therapeutic necrosis, it will also be possible to utilize other noninvasive, radiological imaging techniques to track apoptosis and/or autophagy in deeply placed lesions following treatments such as Pc 4-PDT.
    No preview · Article · Jan 2009
Show more

Similar Publications