Antigen kinetics determines immune reactivity. Proc Natl Acad Sci USA

Unit Experimental Immunotherapy, Department of Dermatology, University Hospital Zurich, Gloriastrasse 31, CH-8091 Zurich, Switzerland.
Proceedings of the National Academy of Sciences (Impact Factor: 9.67). 05/2008; 105(13):5189-94. DOI: 10.1073/pnas.0706296105
Source: PubMed


A current paradigm in immunology is that the strength of T cell responses is governed by antigen dose, localization, and costimulatory signals. This study investigates the influence of antigen kinetics on CD8 T cell responses in mice. A fixed cumulative antigen dose was administered by different schedules to produce distinct dose-kinetics. Antigenic stimulation increasing exponentially over days was a stronger stimulus for CD8 T cells and antiviral immunity than a single dose or multiple dosing with daily equal doses. The same was observed for dendritic cell vaccination, with regard to T cell and anti-tumor responses, and for T cells stimulated in vitro. In conclusion, stimulation kinetics per se was shown to be a separate parameter of immunogenicity. These findings warrant a revision of current immunization models and have implications for vaccine development and immunotherapy.

Download full-text


Available from: Beat Müllhaupt
  • Source
    • "For example, Kanchan et al. reported that slow and continuous antigen release from polymerbased particles played a critical role in eliciting memory antibody responses after a single immunization [21]. Demento et al. reported that sustained antigen release from poly(lactic-coglycolic acid) (PLGA) nanoparticles favored long-term effectormemory cellular responses [22], and Johansen et al. demonstrated that antigenic stimulation increasing exponentially over days induced more potent CD8 þ T cell responses and antiviral immunity than a single dose or multiple doses (equivalent doses, administered daily) [23]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Many physicochemical characteristics significantly influence the adjuvant effect of micro/nanoparticles; one critical factor is the kinetics of antigen exposure to the immune system by particle-adjuvanted vaccines. Here, we investigated how various antigen-nanoparticle formulations impacted antigen exposure to the immune system and the resultant antigen-specific immune responses. We formulated antigen with poly(lactic-co-glycolic acid) (PLGA) nanoparticles by encapsulating antigen within nanoparticles or by simply mixing soluble antigen with the nanoparticles. Our results indicated that the combined formulation (composed of antigen encapsulated in nanoparticles and antigen mixed with nanoparticles) induced more powerful antigen-specific immune responses than each single-component formulation. Mice immunized with the combined vaccine formulation displayed enhanced induction of antigen-specific IgG antibodies with high avidity, increased cytokine secretion by splenocytes, and improved generation of memory T cell. Enhanced immune responses elicited by the combined vaccine formulation might be attributed to the antigen-depot effect at the injection site, effective provision of both adequate initial antigen exposure and long-term antigen persistence, and efficient induction of dendritic cell (DC) activation and follicular helper T cell differentiation in draining lymph nodes. Understanding the effect of antigen-nanoparticle formulations on the resultant immune responses might have significant implications for rational vaccine design.
    Full-text · Article · Apr 2014 · Biomaterials
  • Source
    • "The priming strategy could then be matched with heterologous vectors that expand and/or differentiate the primed cells to therapeutically useful effector T cells or, alternatively, with homologous boosting leading to much higher antigen exposure than during priming. Notably, the latter, which could be a less expensive strategy since it relies only on one vector, is supported by the observation that exposure to gradually higher levels of antigen (starting from minute amounts) over a fairly short interval of just a few days achieved an unexpectedly robust immune response [64], usually only attainable by live virus infection or heterologous prime-boost vaccination. A similar principle could be applied to homologous prime-boost regimens encompassing naked DNA as primer followed by electroporated DNA as a boosting agent [65]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Developing new vaccination strategies and optimizing current vaccines through heterologous prime-boost carries the promise of integrating the benefits of different yet synergistic vectors. It has been widely thought that the increased immunity afforded by heterologous prime-boost vaccination is mainly due to the minimization of immune responses to the carrier vectors, which allows a progressive build up of immunity against defined epitopes and the subsequent induction of broader immune responses against pathogens. Focusing on CD8+ T cells, we put forward a different yet complementary hypothesis based primarily on the systematic analysis of DNA vaccines as priming agents. This hypothesis relies on the finding that during the initiation of immune response, acquisition of co-inhibitory receptors such as programmed cell death-1 (PD-1) is determined by the pattern of antigen exposure in conjunction with Toll-like receptor (TLR)-dependent stimulation, critically affecting the magnitude and profile of secondary immunity. This hypothesis, based upon the acquisition and co-regulation of pivotal inhibitory receptors by CD8+ T cells, offers a rationale for gene-based immunization as an effective priming strategy and, in addition, outlines a new dimension to immune homeostasis during immune reaction to pathogens. Finally, this model implies that new and optimized immunization approaches for cancer and certain viral infections must induce highly efficacious T cells, refractory to a broad range of immune-inhibiting mechanisms, rather than solely or primarily focusing on the generation of large pools of vaccine-specific lymphocytes.
    Full-text · Article · Dec 2010 · Journal of Translational Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In previous studies, we have demonstrated that liposomes with differential lipid components display differential adjuvant effects when antigens (Ags) are chemically coupled to their surfaces. When ovalbumin was coupled to liposomes made by using unsaturated fatty acids, it was found to be presented not only to CD4(+) T cells but also to CD8(+) T cells and induced cytotoxic T lymphocytes (CTLs) which effectively eradicated the tumor from mice. In this study, we coupled liposomes to immunodominant CTL epitope peptides derived from lymphocytic choriomeningitis virus (LCMV) and evaluated its potency as an antiviral vaccine. The intramuscular immunization of mice with the peptide-liposome conjugates along with CpG resulted in the efficient induction of antiviral CD8(+) T-cell responses which conferred complete protection against not only LCMV Armstrong but also a highly virulent mutant strain, clone 13, that establishes persistent infections in immunocompetent mice. The intranasal vaccination induced mucosal immunity effective enough to protect mice from the virus challenge via the same route. Complete protection was achieved in mice even when the Ag dose was reduced to as low as 280 ng of liposomal peptide. This form of vaccination with a single CTL epitope induced Ag-specific memory CD8(+) T cells in the absence of CD4(+) T-cell help, which could be shown by the complete protection of CD4-knockout mice in 10 weeks as well as by the analysis of recall responses. Thus, surface-linked liposomal peptide might have a potential advantage for the induction of antiviral immunity.
    Full-text · Article · Sep 2009 · Clinical and vaccine Immunology: CVI
Show more