Crystal Structure and Raman Studies of dsFP483, a Cyan Fluorescent Protein from Discosoma striata

Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA.
Journal of Molecular Biology (Impact Factor: 4.33). 06/2008; 378(4):871-86. DOI: 10.1016/j.jmb.2008.02.069
Source: PubMed


To better understand the diverse mechanisms of spectral tuning operational in fluorescent proteins (FPs), we determined the 2.1-A X-ray structure of dsFP483 from the reef-building coral Discosoma. This protein is a member of the cyan class of Anthozoa FPs and exhibits broad, double-humped excitation and absorbance bands, with a maximum at 437-440 nm and a shoulder at 453 nm. Although these features support a heterogeneous ground state for the protein-intrinsic chromophore, peak fluorescence occurs at 483 nm for all excitation wavelengths, suggesting a common emissive state. Optical properties are insensitive to changes in pH over the entire range of protein stability. The refined crystal structure of the biological tetramer (space group C2) demonstrates that all protomers bear a cis-coplanar chromophore chemically identical with that in green fluorescent protein (GFP). To test the roles of specific residues in color modulation, we investigated the optical properties of the H163Q and K70M variants. Although absorbance bands remain broad, peak excitation maxima are red shifted to 455 and 460 nm, emitting cyan light and green light, respectively. To probe chromophore ground-state features, we collected Raman spectra using 752-nm excitation. Surprisingly, the positions of key Raman bands of wild-type dsFP483 are most similar to those of the neutral GFP chromophore, whereas the K70M spectra are more closely aligned with the anionic form. The Raman data provide further evidence of a mixed ground state with chromophore populations that are modulated by mutation. Possible internal protonation equilibria, structural heterogeneity in the binding sites, and excited-state proton transfer mechanisms are discussed. Structural alignments of dsFP483 with the homologs DsRed, amFP486, and zFP538-K66M suggest that natural selection for cyan is an exquisitely fine-tuned and highly cooperative process involving a network of electrostatic interactions that may vary substantially in composition and arrangement.

Download full-text


Available from: Allison Stelling
  • Source
    • "However, the crystal structure of dsFP483, a cyan-emitting protein from Discosoma striata (l em = 483 nm), demonstrated that this quadrupole salt-bridge network is not conserved, because in dsFP483 the amino acid position equivalent to His199 is occupied by a threonine. Moreover, in contrast to a proposed anionic chromophore of amFP486, Raman bands of wild-type dsFP483 appeared to be most similar to those of the neutral avGFP chromophore (Malo et al., 2008). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Proteins homologous to green fluorescent protein (GFP) span most of the visible spectrum, offering indispensable tools for live cell imaging. Structural transformations, such as posttranslational autocatalytic and photo-induced modifications, chromophore isomerization, and rearrangements in its environment underlie the unique capacity of these proteins to tune their own optical characteristics. A better understanding of optical self-tuning mechanisms would assist in the engineering of more precisely adapted variants and in expanding the palette of GFP-like proteins to the near-infrared region. The latest advances in this field shed light upon multiple features of protein posttranslational chemistry, and establish some important basic principles about the interplay of structure and spectral properties in the GFP family.
    Full-text · Article · Sep 2008 · Chemistry & Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The maturation process of green fluorescent protein (GFP) entails a protein oxidation reaction triggered by spontaneous backbone condensation. The chromophore is generated by full conjugation of the Tyr66 phenolic group with the heterocycle, a process that requires C-H bond scission at the benzylic carbon. We have prepared isotope-enriched protein bearing tyrosine residues deuterated at the beta carbon, and have determined kinetic isotope effects (KIEs) on the GFP self-processing reaction. Progress curves for the production of H 2O 2 and the mature chromophore were analyzed by global curve fitting to a three-step mechanism describing preoxidation, oxidation and postoxidation events. Although a KIE for protein oxidation could not be discerned ( k H/ k D = 1.1 +/- 0.2), a full primary KIE of 5.9 (+/-2.8) was extracted for the postoxidation step. Therefore, the exocyclic carbon is not involved in the reduction of molecular oxygen. Rather, C-H bond cleavage proceeds from the oxidized cyclic imine form, and is the rate-limiting event of the final step. Substantial pH-dependence of maturation was observed upon substitution of the catalytic glutamate (E222Q), indicating an apparent p K a of 9.4 (+/-0.1) for the base catalyst. For this variant, a KIE of 5.8 (+/-0.4) was determined for the intrinsic time constant that is thought to describe the final step, as supported by ultra-high resolution mass spectrometric results. The data are consistent with general base catalysis of the postoxidation events yielding green color. Structural arguments suggest a mechanism in which the highly conserved Arg96 serves as catalytic base in proton abstraction from the Tyr66-derived beta carbon.
    Preview · Article · Sep 2008 · Biochemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dendra2 is an engineered, monomeric GFP-like protein that belongs to a subclass of fluorescent proteins undergoing irreversible photoconversion from a green- to a red-emitting state upon exposure to purple-blue light. This photoinduced process occurs only in the neutral state of the chromophore and is known to result from backbone cleavage accompanied by an extension of the delocalized pi-electron system. We have measured the X-ray structure of the green species of Dendra2 and performed a comprehensive characterization of the optical absorption and fluorescence properties of the protein in both its green and red forms. The structure, which is very similar to those reported for the closely related proteins EosFP and Kaede, revealed a local structural change involving mainly Arg66 and a water molecule W4, which are part of a charged and hydrogen-bonded cluster of amino acids and water molecules next to the chromophore. Unlike in EosFP and Kaede, Arg66 of Dendra2 does not contribute to negative charge stabilization on the imidazolinone ring by hydrogen bonding to the imidazolinone carbonyl. This structural change may explain the blue shift of the absorption and emission bands, as well as the markedly higher pKs of the hydroxyphenyl moiety of the chromophore, which were determined as 7.1 and 7.5 for the green and red species, respectively. The action spectrum of photoconversion coincides with the absorption band of the neutral species. Consequently, its 20-fold enhancement in Dendra2 at physiological pH accounts for the higher photoconversion yield of this protein as compared to EosFP.
    Full-text · Article · May 2009 · Biochemistry
Show more