Severe Bile Salt Export Pump Deficiency: 82 Different ABCB11 Mutations in 109 Families

Article (PDF Available)inGastroenterology 134(4):1203-14 · April 2008with79 Reads
DOI: 10.1053/j.gastro.2008.01.038 · Source: PubMed
Patients with severe bile salt export pump (BSEP) deficiency present as infants with progressive cholestatic liver disease. We characterized mutations of ABCB11 (encoding BSEP) in such patients and correlated genotypes with residual protein detection and risk of malignancy. Patients with intrahepatic cholestasis suggestive of BSEP deficiency were investigated by single-strand conformation polymorphism analysis and sequencing of ABCB11. Genotypes sorted by likely phenotypic severity were correlated with data on BSEP immunohistochemistry and clinical outcome. Eighty-two different mutations (52 novel) were identified in 109 families (9 nonsense mutations, 10 small insertions and deletions, 15 splice-site changes, 3 whole-gene deletions, 45 missense changes). In 7 families, only a single heterozygous mutation was identified despite complete sequence analysis. Thirty-two percent of mutations occurred in >1 family, with E297G and/or D482G present in 58% of European families (52/89). On immunohistochemical analysis (88 patients), 93% had abnormal or absent BSEP staining. Expression varied most for E297G and D482G, with some BSEP detected in 45% of patients (19/42) with these mutations. Hepatocellular carcinoma or cholangiocarcinoma developed in 15% of patients (19/128). Two protein-truncating mutations conferred particular risk; 38% (8/21) of such patients developed malignancy versus 10% (11/107) with potentially less severe genotypes (relative risk, 3.7 [confidence limits, 1.7-8.1; P = .003]). With this study, >100 ABCB11 mutations are now identified. Immunohistochemically detectable BSEP is typically absent, or much reduced, in severe disease. BSEP deficiency confers risk of hepatobiliary malignancy. Close surveillance of BSEP-deficient patients retaining their native liver, particularly those carrying 2 null mutations, is essential.

Full-text (PDF)

Available from: Giorgina Mieli-Vergani, Sep 29, 2015
    • "It has been unclear whether GGT value in patients with ATP8B1 or ABCB11 deficiency varies as it does in healthy infants. The ranges for GGT in these patients were referred as normal, or low, or low for the degree of cholestasis [14][15][16][17]. The ambiguity might hinder the diagnosis. "
    [Show abstract] [Hide abstract] ABSTRACT: Background and aims: Genetic defects in ATP8B1 or ABCB11 account for the majority of cholestasis with low GGT. But the ranges for GGT in patients with ATP8B1 or ABCB11 deficiency are unclear. This study tried to unravel the features of GGT in these patients that improve diagnostic efficiency. Methods: This study enrolled 207 patients with chronic cholestasis who were ordered to test for ATP8B1 and/or ABCB11 from January 2012 to December 2015. Additional 17 patients with ATPB81 or ABCB11 deficiency diagnosed between January 2004 and December 2011 were also enrolled in this study. 600 population-matched children served as controls. Clinical data were obtained by retrospectively reviewing medical records. Results: A total of 26 patients were diagnosed with ATP8B1 deficiency and 30 patients were diagnosed with ABCB11 deficiency. GGT levels were similar between the two disorders at any observed month of age, but varied with age. The peak GGT value was <70U/L in the 2nd~6th month of life, <60U/L in the 7th~12th month and <50U/L beyond one year. GGT levels in patients with a genetic diagnosis were different from that in patients without a genetic diagnosis and controls. Larger ranges for GGT were found in patients without a genetic diagnosis. Some controls had GGT≥70U/L in the 2nd~6th month. Of the 207 patients, 39 (18.8%) obtained a genetic diagnosis. 111 patients met the ranges described above, including all the 39 patients with ATP8B1 or ABCB11 deficiency. The sensitivity was 100.0%. The rate of a positive molecular diagnosis increased to 35.1% (39/111 vs. 39/207, X2 = 10.363, P = 0.001). The remaining 96 patients exceeded the ranges described above and failed to receive a genetic diagnosis. These patients accounted for 43.8% of sequencing cost. Conclusions: GGT levels in patients with ATP8B1 or ABCB11 deficiency varied with age. The peak GGT value was <70U/L in the 2nd~6th month of life, <60U/L in the 7th~12th month and <50U/L beyond one year.
    Full-text · Article · Apr 2016
    • "Studies in humans demonstrated that the phenotypic consequences of mutations of the orthologous human gene MDR3/ ABCB4 range from neonatal cholestasis to progressive familial intrahepatic cholestasis (PFIC) and cirrhosis in adults [16,61]; they can also result in intrahepatic cholestasis of pregnancy (ICP) [62] as well as intrahepatic and gallbladder cholesterol cholelithiasis , termed low phospholipid-associated cholelithiasis (LPAC) syndrome [63,64]. The related gene ABCB11 encodes the bile salt export pump (BSEP) and was shown to be mutated in consanguineous families with PFIC but generally low serum c-glutamyl transferase activities [15,65]. In contrast, patients with Byler disease and others were shown to carry mutations in the ATP8B1 (FIC1) gene [14,66] which encodes a P-type ATPase that flips phosphatidylserine from the outer to the inner leaflet of the hepatocanalicular membrane, thereby maintaining membrane integrity [67]. "
    [Show abstract] [Hide abstract] ABSTRACT: Paralleling the first 30years of the Journal of Hepatology we have witnessed huge advances in our understanding of liver disease and physiology. Genetic advances have played no small part in that. Initial studies in the 1970s and 1980s identified the strong major histocompatibility complex associations in autoimmune liver diseases. During the 1990s, developments in genomic technologies drove the identification of genes responsible for Mendelian liver diseases. Over the last decade, genome-wide association studies have allowed for the dissection of the genetic susceptibility to complex liver disorders, in which also environmental co-factors play important roles. Findings have allowed the identification and elaboration of pathophysiological processes, have indicated the need for reclassification of liver diseases and have already pointed to new disease treatments. In the immediate future genetics will allow further stratification of liver diseases and contribute to personalized medicine. Challenges exist with regard to clinical implementation of rapidly developing technologies and interpretation of the wealth of accumulating genetic data. The historical perspective of genetics in liver diseases illustrates the opportunities for future research and clinical care of our patients. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
    Full-text · Article · Apr 2015
    • "Genomic DNA was isolated from peripheral blood leukocytes using a Wizard Genomic DNA Purification Kit (Promega, Madison, WI), and all exons of ATP8B1 and ABCB11 and flanking intron–exon boundaries were analyzed as described previously [16,19,20]. "
    [Show abstract] [Hide abstract] ABSTRACT: Background Progressive familial intrahepatic cholestasis type 1 (PFIC1), an inherited liver disease caused by mutations in ATP8B1, progresses to severe cholestasis with a sustained intractable itch. Currently, no effective therapy has been established for PFIC1. Decreased function of the bile salt export pump (BSEP) in hepatocytes is suggested to be responsible for the severe cholestasis observed in PFIC1. We found a previously unidentified pharmacological effect of 4-phenylbutyrate (4PB) that increases the expression and function of BSEP. Here, we tested 4PB therapy in three patients with PFIC1. Methods The therapeutic potency of 4PB in these patients was tested by oral administration of this drug with gradually increasing dosage (200, 350, and 500 mg/kg/day) for 6 months. Biochemical, histological, and clinical data were collected. Results 4PB therapy had no beneficial effect on the patients’ liver functions, as assessed by biochemical and histological analyses, despite an increase in hepatic BSEP expression. However, therapy with 4PB at a dosage of 350 or 500 mg/kg/day significantly relieved the intractable itch. Serum levels of potential pruritogens in cholestasis were much higher than the reference ranges during the 4PB therapy. Conclusions 4PB therapy may be a new medication for patients with intractable cholestatic pruritus and may improve quality of life for patients and their families.
    Full-text · Article · Jul 2014
Show more