Experimental verification and clinical implementation of a commercial Monte Carlo electron beam dose calculation algorithm

University of Nebraska Medical Center, Omaha, Nebraska 68198-7521, USA.
Medical Physics (Impact Factor: 2.64). 04/2008; 35(3):1028-38. DOI: 10.1118/1.2839098
Source: PubMed


This study describes the modeling and the experimental verification and clinical implementation of the alpha release of Pinnacle3 Monte Carlo (MC) electron beam dose calculation algorithm for patient-specific treatment planning. The MC electron beam modeling was performed for beam energies ranging from 6 to 18 MeV from a Siemens (Primus) linear accelerator using standard-shaped electron applicators and 100 cm source-to-surface distance (SSD). The agreement between MC calculations and measurements was, on average, within 2% and 2 mm for all applicator sizes. However, differences of the order of 3%-4% were noted in the off-axis dose profiles for the largest applicator modeled and for all energies. Output factors were calculated for standard electron cones and square cutouts inserted in the 10 x 10 cm2 applicator for different SSDs and were found to be within 4% of measured data. Experimental verification of the MC electron beam model was carried out using an ionization chamber and film in solid-water slab and anthropomorphic phantoms containing bone and lung materials. Agreement between calculated and measured dose distributions was within +/-3%. Clinical comparison was performed in four patient treatment plans with lesions in highly irregular anatomies, such as the ear, face, and breast, where custom-designed bolus and field shaping blocks were used in the patient treatments. For comparison purposes, treatment planning was also performed using the conventional pencil beam (PB) algorithm with the Pinnacle3 treatment planning system. Differences between MC and PB dose calculations for the patient treatment plans were significant, particularly in anatomies where the target was in close proximity to low density tissues, such as lung and air cavities. Concerning monitor unit calculations, the largest differences obtained between MC and PB algorithms were between 4.0% and 5.0% for two patients treated with oblique beams and involving highly irregular surfaces, i.e., breast and cheek. Clinical results are reported for overall uncertainty values (averaged over voxels with doses >50% dosemax) ranging from 2% to 0.3% and calculations were performed using cubic voxels with side 0.3 cm. Timing values ranged from 2 min to 24.5 h, depending on the field size, beam energy, number, and thickness of computed tomography slices used to define the patient's anatomy for the overall uncertainty values mentioned above.

1 Follower
20 Reads
  • Source
    • "Significant discrepancies have been demonstrated between pencil beam algorithms and MC calculations, mainly within or close to air cavities and lung or bone tissues. Dose miscalculation in lung and heart has been found when using a pencil beam algorithm for CW electron treatment planning [22] [23] [24] [25]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: To evaluate the feasibility of using a photon MLC (xMLC) for modulated electron radiotherapy treatment (MERT) as an alternative to conventional post-mastectomy chest wall (CW) irradiation. A Monte Carlo (MC) based planning system was developed to overcome the inaccuracy of the 'pencil beam' algorithm. MC techniques are known to accurately calculate the dose distributions of electron beams, allowing the explicit simulation of electron interactions within the MLC. Four real clinical CW cases were planned using MERT which were compared with the conventional electron treatments based on blocks and by a straightforward approach using the MLC, and not the blocks (as an intermediate step to MERT) to shape the same segments with SSD between 60 and 70 cm depending on PTV size. MC calculations were verified with an array of ionization chambers and radiochromic films in a solid water phantom. Tests based on gamma analysis between MC dose distributions and radiochromic film measurements showed an excellent agreement. Differences in the absolute dose measured with a plane-parallel chamber at a reference point were below 3% for all cases. MERT solution showed a better PTV coverage and a significant reduction of the doses to the organs at risk (OARs). MERT can effectively improve the current electron treatments by obtaining a better PTV coverage and sparing healthy tissues. More directly, block-shaped treatments could be replaced by MLC-shaped non-modulated segments providing similar results.
    Full-text · Article · Sep 2009 · Radiotherapy and Oncology
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study investigated dosimetric changes in a water phantom when a small air cavity was presented at the central axis of a clinical electron beam. We used 6-, 9-, and 16-MeV electron beams with a 10 x 10 cm(2) applicator and cutout produced by a Varian 21 EX linear accelerator. Percentage depth doses (PDDs) for different depths (0.5-7 cm), thicknesses (2-10 mm), and widths (1-5 cm) of air cavities were calculated using Monte Carlo simulations (EGSnrc code) validated by film measurements. By comparing PDDs of phantoms with and without the air cavity, it was found that when the depth or thickness of cavity was changed, the PDD curve below the cavity was shifted with a distance equal to the thickness of the cavity. However, when the width of the air cavity was changed, both the PDD curve and its slope within and below the cavity were changed. A larger width of the air cavity resulted in a shallower PDD curve within the cavity. The slope of the PDD curve below the cavity tended towards a value as the width of the air cavity was increased to 3-5 cm for the 6-, 9-, and 16-MeV electron beams. The dependence of the depth dose on the width of the air cavity is a result of the contribution of the electron side scattering in the water surrounding the cavity. The change in depth dose resulting from the presence of an air cavity can cause discrepancies between the calculated and actual dose during radiotherapy, unless the effects of the air cavity are properly characterized during treatment planning. From the dosimetry data in this study, neglecting an air cavity of 1-cm thickness in the build-up region of a 6-MeV electron beam resulted in a delivered dose 10-12% larger than the original prescription. Delivered doses 3% and 6% higher than the prescribed dose were observed when doses were prescribed at R(80) for a 16-MeV electron beam. These results were obtained by neglecting air cavities with thicknesses equal to 2 and 4 mm, respectively, at a depth of 5 cm.
    No preview · Article · Apr 2009 · Medical dosimetry: official journal of the American Association of Medical Dosimetrists
  • [Show abstract] [Hide abstract]
    ABSTRACT: The contribution of a commercially available diode matrix (MapCHECK, provided by Sun Nuclear, Melbourne, FL) for the commissioning procedures of the voxel based Monte Carlo (VMC++) algorithm for electron beams of MasterPlan treatment planning system was investigated. The attention is mainly focused on the calculation in homogeneous and heterogeneous phantoms. With this aim, following a data set similar to that proposed by Electron Collaborative Working Group (ECWG), the dose profiles and two-dimensional (2D) dose distributions measured by the diode matrix were compared with the calculated ones using the gamma analysis method with acceptance criteria for the dose difference and the distance to agreement equal to 4% and 4 mm, respectively. The average and standard deviation of the percentage of points satisfying the constraint gamma < or = 1 are 98.3 +/- 4.1% and 99.3 +/- 1.7% for the 9 and 12 MeV electron beam, respectively, showing that the accuracy of MasterPlan electron beam algorithm is good for simple two-dimensional geometries as well as for more complicated three-dimensional ones. The results are in agreement with those reported in literature by Cygler et al. ["Evaluation of the first commercial Monte Carlo dose calculation engine for electron beam treatment planning," Med. Phys. 31, 142-153 (2004)]. In addition, the authors have also analyzed the response of the 2D array in terms of dose profiles at different depths, comparing the results with those obtained in water phantom using an electron diode. The results show that in the low gradient regions there were no deviations larger than the criteria of acceptability set by Van Dyk et al. ["Commissioning and quality assurance of treatment planning computers," Int. J. Radiat. Oncol. Biol. Phys. 26, 261-273 (1993)]; in the high gradient region, the maximum deviations are less than 2 mm with most of the values less than 1 mm. The present article shows that MapCHECK can play a useful role in the commissioning of electron algorithms of treatment planning systems in the evaluation of the 2D dose distributions in homogeneous and heterogeneous phantoms. In fact, it provides accurate results with the merit of expediting the commissioning process by using measuring device that requires minimal setup time and data processing time.
    No preview · Article · May 2009 · Medical Physics
Show more