In Situ Detection and Measurement of Intracellular Reactive Oxygen Species in Single Isolated Mature Skeletal Muscle Fibers by Real Time Fluorescence Microscopy

Division of Metabolic and Cellular Medicine, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom.
Antioxidants & Redox Signaling (Impact Factor: 7.41). 09/2008; 10(8):1463-74. DOI: 10.1089/ars.2007.2009
Source: PubMed


Reactive oxygen species (ROS) produced by skeletal muscle stimulate adaptive responses to activity and mediate some degenerative processes. ROS activity is usually studied by measuring indirect end-points of their reactions with various biomolecules. In order to develop a method to measure the intracellular ROS generation in real-time in mature skeletal muscle fibers, these were isolated from the flexor digitorum brevis (FDB) muscle of mice and cultured on collagen-coated plates. Fibers were loaded with 5- (and 6-) chloromethyl-2',7'-dichlorodihydrofluorescein diacetate (CM-DCFH DA) and measurements of 5- (and 6-) chloromethyl-2',7'-dichlorofluorescin (CM-DCF) fluorescence from individual fibers obtained by microscopy over 45 min. The sensitivity of this approach was demonstrated by addition of 1 microM H(2)O(2) to the extracellular medium. Contractions of isolated fibers induced by field electrical stimulation caused a significant increase in CM-DCF fluorescence that was abolished by pre-treatment of fibers with glutathione ethyl ester. Thus, CM-DCF fluorescence microscopy can detect physiologically relevant changes in intracellular ROS activity in single isolated mature skeletal muscle fibers in real-time, and contractions generated a net increase that was abolished when the intracellular glutathione content was enhanced. This technique has advantages over previous approaches because of the maturity of the fibers and the analysis of single cells, which prevent contributions from nonmuscle cells.

Download full-text


Available from: David G Spiller
  • Source
    • "Next, we hypothesized that the spontaneous reoxygenation of the ischemic tissue at the infarct core could trigger increased free‐radical generation in a manner similar to classical ischemia‐reperfusion,38 and this might limit BMPC accumulation in central areas of the infarct. To test this possibility, we first detected ROS formation and distribution using whole‐heart incubation with ROS‐sensitive fluorescent probes DHE (sensitive to superoxide39) and CM‐DCF‐DA (sensitive to H2O2 and other ROS40), and we compared their pattern with that of LacZ staining. We found that at the core of infarcts there was substantial DHE‐detectable superoxide formation, accompanied by a time‐dependent increase of CM‐DCF‐DA staining (Figure 4A through 4I) in a pattern visible from the surface and inversely mirroring the distribution of LacZ+ bone marrow–derived cells (Figures 1B and 3B). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The core region of a myocardial infarction is notoriously unsupportive of cardiomyocyte survival. However, there has been less investigation of the potentially beneficial spontaneous recruitment of endogenous bone marrow progenitor cells (BMPCs) within infarcted areas. In the current study we examined the role of tissue oxygenation and derived toxic species in the control of BMPC engraftment during postinfarction heart remodeling. For assessment of cellular origin, local oxygenation, redox status, and fate of cells in the infarcted region, myocardial infarction in mice with or without LacZ(+) bone marrow transplantation was induced by coronary ligation. Sham-operated mice served as controls. After 1 week, LacZ(+) BMPC-derived cells were found inhomogeneously distributed into the infarct zone, with a lower density at its core. Electron paramagnetic resonance (EPR) oximetry showed that pO2 in the infarct recovered starting on day 2 post-myocardial infarction, concomitant with wall thinning and erythrocytes percolating through muscle microruptures. Paralleling this reoxygenation, increased generation of reactive oxygen/nitrogen species was detected at the infarct core. This process delineated a zone of diminished BMPC engraftment, and at 1 week infiltrating cells displayed immunoreactive 3-nitrotyrosine and apoptosis. In vivo treatment with a superoxide dismutase mimetic significantly reduced reactive oxygen species formation and amplified BMPC accumulation. This treatment also salvaged wall thickness by 43% and left ventricular ejection fraction by 27%, with significantly increased animal survival. BMPC engraftment in the infarct inversely mirrored the distribution of reactive oxygen/nitrogen species. Antioxidant treatment resulted in increased numbers of engrafted BMPCs, provided functional protection to the heart, and decreased the incidence of myocardial rupture and death.
    Full-text · Article · Dec 2014 · Journal of the American Heart Association
  • Source
    • "Single fibers were isolated from the FDB muscles of mice using the method of Shefer & Yablonka-Reuveni [25] as modified by Palomero et al., [9]. FDB muscles were incubated for 1.5 hr at 37°C in 0.4% (w/v) Type I collagenase (EC, Sigma Chemical Co., Poole, Dorset, UK) in minimum essential medium eagle (MEM) media containing 2 mM glutamine, 50 i.u. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Skeletal muscle generation of reactive oxygen species (ROS) is increased following contractile activity and these species interact with multiple signaling pathways to mediate adaptations to contractions. The sources and time course of the increase in ROS during contractions remain undefined. Confocal microscopy with specific fluorescent probes was used to compare the activities of superoxide in mitochondria and cytosol and the hydrogen peroxide content of the cytosol in isolated single mature skeletal muscle (flexor digitorum brevis) fibers prior to, during, and after electrically stimulated contractions. Superoxide in mitochondria and cytoplasm were assessed using MitoSox red and dihydroethidium (DHE) respectively. The product of superoxide with DHE, 2-hydroxyethidium (2-HE) was acutely increased in the fiber cytosol by contractions, whereas hydroxy-MitoSox showed a slow cumulative increase. Inhibition of nitric oxide synthases increased the contraction-induced formation of hydroxy-MitoSox only with no effect on 2-HE formation. These data indicate that the acute increases in cytosolic superoxide induced by contractions are not derived from mitochondria. Data also indicate that, in muscle mitochondria, nitric oxide (NO) reduces the availability of superoxide, but no effect of NO on cytosolic superoxide availability was detected. To determine the relationship of changes in superoxide to hydrogen peroxide, an alternative specific approach was used where fibers were transduced using an adeno-associated viral vector to express the hydrogen peroxide probe, HyPer within the cytoplasmic compartment. HyPer fluorescence was significantly increased in fibers following contractions, but surprisingly followed a relatively slow time course that did not appear directly related to cytosolic superoxide. These data demonstrate for the first time temporal and site specific differences in specific ROS that occur in skeletal muscle fibers during and after contractile activity.
    Full-text · Article · May 2014 · PLoS ONE
  • Source
    • "Skeletal muscle generates superoxide and hydrogen peroxide at rest and this formation is increased during contractile activity along with an increase in superoxide and hydrogen peroxide in skeletal muscle interstitial fluid of animal models [1] [2] [3]. Accumulation of indicators of oxidative damage to lipids, DNA, and proteins has been observed in tissues of aged organisms, which may contribute to loss of tissue homoeostasis. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Reactive oxygen species (ROS) are important signaling molecules with regulatory functions, and in young and adult organisms, the formation of ROS is increased during skeletal muscle contractions. However, ROS can be deleterious to cells when not sufficiently counterbalanced by the antioxidant system. Aging is associated with accumulation of oxidative damage to lipids, DNA and proteins. Given the pro-oxidant effect of skeletal muscle contractions, this effect of age could be a result of excessive ROS formation. We evaluated the effect of acute exercise on changes in blood redox state across the leg of young (23±1 years) and older (66±2 years) sedentary humans by measuring the whole blood concentration of the reduced (GSH) and oxidized (GSSG) form of the antioxidant glutathione. To assess the role of physical activity, lifelong physically active older subjects (62±2 years) were included. Exercise increased the venous concentration of GSSG in an intensity-dependent manner in young sedentary subjects, suggesting an exercise-induced increase in ROS formation. In contrast, venous GSSG levels remained unaltered during exercise in the older sedentary and active groups despite a higher skeletal muscle expression of the superoxide generating enzyme NADPH oxidase. Arterial concentration of GSH and expression of antioxidant enzymes in skeletal muscle of older active subjects was found to be increased. The potential impairment in exercise-induced ROS formation may be an important mechanism underlying skeletal muscle and vascular dysfunction with sedentary aging. Lifelong physical activity up-regulates antioxidant systems which may be one of the mechanisms underlying the lack of exercise-induced increase in GSSG.
    Full-text · Article · May 2014 · Free Radical Biology and Medicine
Show more