Article

Haem homeostasis is regulated by the conserved and concerted functions of HRG-1 proteins

Department of Animal & Avian Sciences, University of Maryland, College Park, Maryland 20742, USA.
Nature (Impact Factor: 41.46). 07/2008; 453(7198):1127-31. DOI: 10.1038/nature06934
Source: PubMed

ABSTRACT

Haems are metalloporphyrins that serve as prosthetic groups for various biological processes including respiration, gas sensing, xenobiotic detoxification, cell differentiation, circadian clock control, metabolic reprogramming and microRNA processing. With a few exceptions, haem is synthesized by a multistep biosynthetic pathway comprising defined intermediates that are highly conserved throughout evolution. Despite our extensive knowledge of haem biosynthesis and degradation, the cellular pathways and molecules that mediate intracellular haem trafficking are unknown. The experimental setback in identifying haem trafficking pathways has been the inability to dissociate the highly regulated cellular synthesis and degradation of haem from intracellular trafficking events. Caenorhabditis elegans and related helminths are natural haem auxotrophs that acquire environmental haem for incorporation into haemoproteins, which have vertebrate orthologues. Here we show, by exploiting this auxotrophy to identify HRG-1 proteins in C. elegans, that these proteins are essential for haem homeostasis and normal development in worms and vertebrates. Depletion of hrg-1, or its paralogue hrg-4, in worms results in the disruption of organismal haem sensing and an abnormal response to haem analogues. HRG-1 and HRG-4 are previously unknown transmembrane proteins, which reside in distinct intracellular compartments. Transient knockdown of hrg-1 in zebrafish leads to hydrocephalus, yolk tube malformations and, most strikingly, profound defects in erythropoiesis-phenotypes that are fully rescued by worm HRG-1. Human and worm proteins localize together, and bind and transport haem, thus establishing an evolutionarily conserved function for HRG-1. These findings reveal conserved pathways for cellular haem trafficking in animals that define the model for eukaryotic haem transport. Thus, uncovering the mechanisms of haem transport in C. elegans may provide insights into human disorders of haem metabolism and reveal new drug targets for developing anthelminthics to combat worm infestations.

Download full-text

Full-text

Available from: M. K. Mathew
  • Source
    • "The ubiquitous location of ATP-Binding Cassette, subfamily G, member 2 (ABCG2) at the apical membrane of the cells also facilitates heme extracellular export and prevents the deleterious effects of its accumulation[36,37]. Intracellular heme trafficking is mainly mediated by the heme-importer heme-responsive gene 1 (HRG-1)[38], fundamental to ensure the recycling of this molecule by erythrophagocytic macrophages[39]. Roles of heme importers have also been proposed for the heme carrier protein 1 (HCP1), ABCB6, and FLVCR2[40]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Iron is required for the survival of most organisms, including bacteria, plants, and humans. Its homeostasis in mammals must be fine-tuned to avoid iron deficiency with a reduced oxygen transport and diminished activity of Fe-dependent enzymes, and also iron excess that may catalyze the formation of highly reactive hydroxyl radicals, oxidative stress, and programmed cell death. The advance in understanding the main players and mechanisms involved in iron regulation significantly improved since the discovery of genes responsible for hemochromatosis, the IRE/IRPs machinery, and the hepcidin-ferroportin axis. This review provides an update on the molecular mechanisms regulating cellular and systemic Fe homeostasis and their roles in pathophysiologic conditions that involve alterations of iron metabolism, and provides novel therapeutic strategies to prevent the deleterious effect of its deficiency/overload.
    Full-text · Article · Jan 2016 · International Journal of Molecular Sciences
  • Source
    • "However, the mechanism for heme absorption is not yet clear. In the last decade, several heme transporters have been identified, including heme carrier protein-1 (HCP1; Qiu et al., 2006; Laftah et al., 2009), HRG-1 (Rajagopal et al., 2008; White et al., 2013), and FLVCR1 and 2 (Quigley et al., 2004; Keel et al., 2008; Duffy et al., 2010), but their significance in intestinal iron absorption remains to be elucidated. For non-heme iron absorption, ferric iron [Fe(III)] in the diet must be reduced by a ferrireductase duodenal cytochrome b561 (Dcytb) to ferrous iron [Fe(II)] before the divalent metal transporter 1 (DMT1, also known as DCT1 or NRAMP2) can transport iron across the apical membrane into the cytosol of duodenal epithelial cells (so-called enterocytes; Gunshin et al., 1997; McKie et al., 2001). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Iron regulatory proteins (IRPs) regulate the expression of genes involved in iron metabolism by binding to RNA stem-loop structures known as iron responsive elements (IREs) in target mRNAs. IRP binding inhibits the translation of mRNAs that contain an IRE in the 5'untranslated region of the transcripts, and increases the stability of mRNAs that contain IREs in the 3'untranslated region of transcripts. By these mechanisms, IRPs increase cellular iron absorption and decrease storage and export of iron to maintain an optimal intracellular iron balance. There are two members of the mammalian IRP protein family, IRP1 and IRP2, and they have redundant functions as evidenced by the embryonic lethality of the mice that completely lack IRP expression (Irp1 (-/-)/Irp2(-/-) mice), which contrasts with the fact that Irp1 (-/-) and Irp2 (-/-) mice are viable. In addition, Irp2 (-/-) mice also display neurodegenerative symptoms and microcytic hypochromic anemia, suggesting that IRP2 function predominates in the nervous system and erythropoietic homeostasis. Though the physiological significance of IRP1 had been unclear since Irp1 (-/-) animals were first assessed in the early 1990s, recent studies indicate that IRP1 plays an essential function in orchestrating the balance between erythropoiesis and bodily iron homeostasis. Additionally, Irp1 (-/-) mice develop pulmonary hypertension, and they experience sudden death when maintained on an iron-deficient diet, indicating that IRP1 has a critical role in the pulmonary and cardiovascular systems. This review summarizes recent progress that has been made in understanding the physiological roles of IRP1 and IRP2, and further discusses the implications for clinical research on patients with idiopathic polycythemia, pulmonary hypertension, and neurodegeneration.
    Full-text · Article · Jun 2014 · Frontiers in Pharmacology
  • Source
    • "Mammalian Hrg1 has been shown to be expressed widely, with the highest expression in the brain, heart, kidney, and muscle, with some expression in the placenta and intestine (Rajagopal et al., 2008). Hrg1 has been linked to a possible role in cancer progression, as its interaction with V-type ATPases is associated with changes in endocytic trafficking, extracellular acidification, altered glucose metabolism, and matrix metalloprotease activity (O’Callaghan et al., 2010; Fogarty et al., 2013). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Heme is an iron-containing porphyrin ring that serves as a prosthetic group in proteins that function in diverse metabolic pathways. Heme is also a major source of bioavailable iron in the human diet. While the synthesis of heme has been well-characterized, the pathways for heme trafficking remain poorly understood. It is likely that heme transport across membranes is highly regulated, as free heme is toxic to cells. This review outlines the requirement for heme delivery to various subcellular compartments as well as possible mechanisms for the mobilization of heme to these compartments. We also discuss how these trafficking pathways might function during physiological events involving inter- and intra-cellular mobilization of heme, including erythropoiesis, erythrophagocytosis, heme absorption in the gut, as well as heme transport pathways supporting embryonic development. Lastly, we aim to question the current dogma that heme, in toto, is not mobilized from one cell or tissue to another, outlining the evidence for these pathways and drawing parallels to other well-accepted paradigms for copper, iron, and cholesterol homeostasis.
    Full-text · Article · Jun 2014 · Frontiers in Pharmacology
Show more