Morphological and Electrical Properties of Human Trophoblast Choriocarcinoma, BeWo Cells

Nephrology Division and Electrophysiology Core, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
Placenta (Impact Factor: 2.71). 06/2008; 29(6):492-502. DOI: 10.1016/j.placenta.2008.02.013
Source: PubMed


The syncytiotrophoblast of the human placenta arises from fusion of stem cells called cytotrophoblasts. The molecular mechanisms associated with cell fusion and syncytiation of cytotrophoblastic cells remain largely unknown. In the present study, we investigated the morphological and electrical properties of BeWo cells, a human choriocarcinoma-derived trophoblast cell model, with several features of the human cytotrophoblast. Cultured cells tended to cluster, but only fused into small, multinucleated syncytia in the presence of cAMP (72 h). The morphological features of both the actin and microtubular cytoskeletons indicated that within 72 h of constant exposure to cAMP, intracellular cortical actin cytoskeleton disappeared, which was the most prominent inducing factor of multi-nucleation. The presence of the cation channel protein, polycystin-2 (PC2), a TRP-type cation channel, associated with placental ion transport in term human syncytiotrophoblast, co-localised with acetylated tubulin in midbodies, but was found non-functional under any conditions. Different electrical phenotypes were observed among control BeWo cells, where only 26% (8 of 31 cells) displayed a voltage-dependent outwardly rectifying conductance. Most quiescent BeWo cells had, however, a low, slightly outwardly rectifying basal whole cell conductance. Acute exposure to intracellular cAMP (<15 min) increased the whole cell conductance by 122%, from 0.72 nS/cell to 1.60 nS/cell, and eliminated the voltage-regulated conductance. The encompassed evidence indicates that the early events in BeWo cell fusion and syncytiation occur by cAMP-associated changes in ionic conductance but not morphological changes associated to chronic exposure to the second messenger. This suggests a tight regulation, and important contribution of cation conductances in cytotrophoblastic cells prior to syncytiation.

17 Reads
    • "The requirement for reduced intracellular calcium in BeWo cell fusion is quite surprising as myoblast fusion is driven by increased intracellular calcium and highlights tissue specific differences in these fusion mechanisms [23]. Although inhibition of calcium influx appears to be functionally important in BeWo cell fusion [24], it is not sufficient as nifedipine itself does neither induce cell fusion nor potentiates forskolin-mediated fusion. "
    [Show abstract] [Hide abstract]
    ABSTRACT: To establish a simple and quantitative live cell fusion assay for placental syncytialization, we generated stable GFP and dsRed expressing fusogenic BeWo cell lines. Fluorescent Activated Cell Sorting was shown to provide a quantitative determination of forskolin (cAMP-mediated) fusion in a time and concentration dependent manner consistent with the increased secretion of beta human chorionic gonadotrophin (β-HCG) and appearance of multi-nucleated cells. Analyses of the fusion process demonstrated that in addition to increased cAMP levels, simultaneous reduction of intracellular calcium and inhibition of Type 1 phosphatidylinositol 3 kinase (PI3K)/Akt signaling also resulted in cell fusion. Although individual blockade of calcium channel function or PI3K/Akt signaling was without effect, the combination with forskolin resulted in a potentiation of cell fusion. These data demonstrate syncytialization is a complex process that depends upon the regulation of distinct signaling inputs that function in concert with each other.
    No preview · Article · Jan 2012 · PLoS ONE
  • Source
    • "The goal of the present study was to test our hypotheses regarding the regulation of PAPPA2 using BeWo cells as a model of placental trophoblasts [34,35]. In addition to PAPPA2, we also measured levels of PAPPA and ADAM12 since they are also placental IGFBP proteases [21,36] associated with preeclampsia and intrauterine growth restriction (IUGR) [19,22,23,37,38], and IGFBP proteases may be coregulated [39]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Pregnancy-associated plasma protein A2 (PAPPA2) is an insulin-like growth factor-binding protein (IGFBP) protease expressed at high levels in the placenta and upregulated in pregnancies complicated by preeclampsia and HELLP (Hemolytic anemia, Elevated Liver enzymes, and Low Platelet count) syndrome. However, it is unclear whether elevated PAPPA2 expression causes abnormal placental development, or whether upregulation compensates for placental pathology. In the present study, we investigate whether PAPPA2 expression is affected by hypoxia, oxidative stress, syncytialization factors or substances known to affect the expression of PAPPA2's paralogue, PAPPA. BeWo cells, a model of placental trophoblasts, were treated with one of the following: hypoxia (2% O2), oxidative stress (20 microM hydrogen peroxide), forskolin (10 microM and 100 microM), TGF-beta (10 and 50 ng/mL), TNF-alpha (100 ng/mL), IL-1beta (100 ng/mL) or PGE2 (1 microM). We used quantitative RT-PCR (qRT-PCR) to quantify the mRNA levels of PAPPA2, as well as those of PAPPA and ADAM12 since these proteases have similar substrates and are also highly expressed in the placenta. Where we observed significant effects on PAPPA2 mRNA levels, we tested for effects at the protein level using an in-cell Western assay. Hypoxia, but not oxidative stress, caused a 47-fold increase in PAPPA2 mRNA expression, while TNF-alpha resulted in a 6-fold increase, and both of these effects were confirmed at the protein level. PGE2 resulted in a 14-fold upregulation of PAPPA2 mRNA but this was not reflected at the protein level. Forskolin, TGF-beta and IL-1beta had no significant effect on PAPPA2 mRNA expression. We observed no effects of any treatment on PAPPA or ADAM12 expression. Our study demonstrates that factors previously known to be highly expressed in preeclamptic placentae (PGE2 and TNF-alpha), contribute to the upregulation of PAPPA2. Hypoxia, known to occur in preeclamptic placentae, also increased PAPPA2 expression. These results are consistent with the hypothesis that PAPPA2 is upregulated as a consequence of placental pathology, rather than elevated PAPPA2 levels being a cause of preeclampsia.
    Full-text · Article · Apr 2011 · Reproductive Biology and Endocrinology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The present study was performed to assay sodium currents in BeWo cells. These cells comprise a human trophoblast cell line which displays many of the biochemical and morphological properties similar to those reported for the in uterus proliferative cytotrophoblast. For whole-cell patch-clamp experiments, BeWo cells treated for 12 h with 100 nM aldosterone were exposed to 8Br-cAMP, a membrane-permeable cAMP analogue, to induce channel activity. Cells showed an amiloride-sensitive ion current (IC50 of 5.77 μM). Ion substitution experiments showed that the amiloride-sensitive current carried cations with a permeability rank order of Li+ > Na+ > K+ > NMDG (PLi/PNa = 1.3, PK/PNa = 0.6, PNMDG/PNa = 0.2). In cells pretreated with aldosterone, we observed that nearly half of successful patches had sodium channels with a linear conductance of 6.4 ± 1.8 pS, a low voltage-independent P o and a PK/PNa of 0.19. Using RT-PCR, we determined that control cells express the α-, but not β- and γ-, epithelial sodium channel (ENaC) mRNA. When cells were treated with aldosterone (100 nM, 12 h), all α-, β- and γ-ENaC mRNAs were detected. The presence of ENaC subunit proteins in these cells was confirmed by Western blot analysis and immunolocalization with specific ENaC primary antibodies. In summary, our results suggest that BeWo cells express ENaC subunits and that aldosterone was able to modulate a selective response by generating amiloride-sensitive sodium currents similar to those observed in other human tissues.
    Full-text · Article · Jul 2008 · Journal of Membrane Biology
Show more