Image standards in Tissue-Based Diagnosis (Diagnostic Surgical Pathology)

UICC-TPCC, Institute of Pathology, Charite, Berlin, Germany.
Diagnostic Pathology (Impact Factor: 2.6). 02/2008; 3(1):17. DOI: 10.1186/1746-1596-3-17
Source: PubMed


Progress in automated image analysis, virtual microscopy, hospital information systems, and interdisciplinary data exchange require image standards to be applied in tissue-based diagnosis.
To describe the theoretical background, practical experiences and comparable solutions in other medical fields to promote image standards applicable for diagnostic pathology. THEORY AND EXPERIENCES: Images used in tissue-based diagnosis present with pathology-specific characteristics. It seems appropriate to discuss their characteristics and potential standardization in relation to the levels of hierarchy in which they appear. All levels can be divided into legal, medical, and technological properties. Standards applied to the first level include regulations or aims to be fulfilled. In legal properties, they have to regulate features of privacy, image documentation, transmission, and presentation; in medical properties, features of disease-image combination, human-diagnostics, automated information extraction, archive retrieval and access; and in technological properties features of image acquisition, display, formats, transfer speed, safety, and system dynamics. The next lower second level has to implement the prescriptions of the upper one, i.e. describe how they are implemented. Legal aspects should demand secure encryption for privacy of all patient related data, image archives that include all images used for diagnostics for a period of 10 years at minimum, accurate annotations of dates and viewing, and precise hardware and software information. Medical aspects should demand standardized patients' files such as DICOM 3 or HL 7 including history and previous examinations, information of image display hardware and software, of image resolution and fields of view, of relation between sizes of biological objects and image sizes, and of access to archives and retrieval. Technological aspects should deal with image acquisition systems (resolution, colour temperature, focus, brightness, and quality evaluation procedures), display resolution data, implemented image formats, storage, cycle frequency, backup procedures, operation system, and external system accessibility. The lowest third level describes the permitted limits and threshold in detail. At present, an applicable standard including all mentioned features does not exist to our knowledge; some aspects can be taken from radiological standards (PACS, DICOM 3); others require specific solutions or are not covered yet.
The progress in virtual microscopy and application of artificial intelligence (AI) in tissue-based diagnosis demands fast preparation and implementation of an internationally acceptable standard. The described hierarchic order as well as analytic investigation in all potentially necessary aspects and details offers an appropriate tool to specifically determine standardized requirements.

Download full-text


Available from: Torsten Goldmann
  • Source
    • "Proper collection of color information is a high priority in the design of imaging pipelines [16], [36] and integral to identification of objects in diagnostic medical imaging applications [37], [38]. Staining dyes transform properties of the sample correlated to pathology into distinct color changes that pathologists, and more recently algorithms [39], are trained to recognize. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Use of optical imaging for medical and scientific applications requires accurate quantification of features such as object size, color, and brightness. High pixel density cameras available on modern mobile phones have made photography simple and convenient for consumer applications; however, the camera hardware and software that enables this simplicity can present a barrier to accurate quantification of image data. This issue is exacerbated by automated settings, proprietary image processing algorithms, rapid phone evolution, and the diversity of manufacturers. If mobile phone cameras are to live up to their potential to increase access to healthcare in low-resource settings, limitations of mobile phone-based imaging must be fully understood and addressed with procedures that minimize their effects on image quantification. Here we focus on microscopic optical imaging using a custom mobile phone microscope that is compatible with phones from multiple manufacturers. We demonstrate that quantitative microscopy with micron-scale spatial resolution can be carried out with multiple phones and that image linearity, distortion, and color can be corrected as needed. Using all versions of the iPhone and a selection of Android phones released between 2007 and 2012, we show that phones with greater than 5 MP are capable of nearly diffraction-limited resolution over a broad range of magnifications, including those relevant for single cell imaging. We find that automatic focus, exposure, and color gain standard on mobile phones can degrade image resolution and reduce accuracy of color capture if uncorrected, and we devise procedures to avoid these barriers to quantitative imaging. By accommodating the differences between mobile phone cameras and the scientific cameras, mobile phone microscopes can be reliably used to increase access to quantitative imaging for a variety of medical and scientific applications.
    Full-text · Article · May 2014 · PLoS ONE
  • Source
    • "All of threshold methods suffer from a lack of universality as they are adjusted by specifics image parameters: level of contrast [37-39] or degree of saturation [8] and so on. It is observed that changes in image characteristics caused by tissue variability or more often by optics and camera settings cases moderate results of segmentation [15,40]. This paper compares the results of chosen thresholding methods applied to three types of colour information captured form RGB digital images: (1) B channel, (2) brown axis and (3) deconvolution to separate brown channel. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The comparative study of the results of various segmentation methods for the digital images of the follicular lymphoma cancer tissue section is described in this paper. The sensitivity and specificity and some other parameters of the following adaptive threshold methods of segmentation: the Niblack method, the Sauvola method, the White method, the Bernsen method, the Yasuda method and the Palumbo method, are calculated. Methods are applied to three types of images constructed by extraction of the brown colour information from the artificial images synthesized based on counterpart experimentally captured images. This paper presents usefulness of the microscopic image synthesis method in evaluation as well as comparison of the image processing results. The results of thoughtful analysis of broad range of adaptive threshold methods applied to: (1) the blue channel of RGB, (2) the brown colour extracted by deconvolution and (3) the ’brown component’ extracted from RGB allows to select some pairs: method and type of image for which this method is most efficient considering various criteria e.g. accuracy and precision in area detection or accuracy in number of objects detection and so on. The comparison shows that the White, the Bernsen and the Sauvola methods results are better than the results of the rest of the methods for all types of monochromatic images. All three methods segments the immunopositive nuclei with the mean accuracy of 0.9952, 0.9942 and 0.9944 respectively, when treated totally. However the best results are achieved for monochromatic image in which intensity shows brown colour map constructed by colour deconvolution algorithm. The specificity in the cases of the Bernsen and the White methods is 1 and sensitivities are: 0.74 for White and 0.91 for Bernsen methods while the Sauvola method achieves sensitivity value of 0.74 and the specificity value of 0.99. According to Bland-Altman plot the Sauvola method selected objects are segmented without undercutting the area for true positive objects but with extra false positive objects. The Sauvola and the Bernsen methods gives complementary results what will be exploited when the new method of virtual tissue slides segmentation be develop. Virtual Slides The virtual slides for this article can be found here: slide 1: and slide 2:
    Full-text · Article · Mar 2013 · Diagnostic Pathology
  • Source
    • "Standardization of images capture is a central point in the development of a diagnostic algorithm in virtual microscopy [17]. In our study, optimal specification for the capture of images from FISH HER2 slides hybridized with PathVysion™ HER2 DNA Probe kit (image size, size of tiles, identification criteria for HER2 and CEP17 spots, segmentation criteria for nuclei, filtering) has been previously established using over 400 slides (personal communication, Ulrich Klingbeil, MetaSystems). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Amplification of the human epidermal growth factor receptor 2 (HER2) is a prognostic marker for poor clinical outcome and a predictive marker for therapeutic response to targeted therapies in breast cancer patients. With the introduction of anti-HER2 therapies, accurate assessment of HER2 status has become essential. Fluorescence in situ hybridization (FISH) is a widely used technique for the determination of HER2 status in breast cancer. However, the manual signal enumeration is time-consuming. Therefore, several companies have developed automated image analysis software like MetaSystems. Some of these signal enumeration software employ the so called "tile-sampling classifier", a programming algorithm through which the software quantifies fluorescent signals in images on the basis of square tiles of fixed dimensions. Considering that the size of tile does not always correspond to the size of a single tumor cell nucleus, some users argue that this analysis method might not completely reflect the biology of cells. For that reason, MetaSystems has developed a new classifier which is able to recognize nuclei within tissue sections in order to determine the HER2 amplification status on nuclei basis. We call this new programming algorithm "nucleisampling classifier". In this study, we evaluated the accuracy of the "nuclei-sampling classifier" in determining HER2 gene amplification by FISH in nuclei of breast cancer cells. To this aim, we randomly selected from our cohort 64 breast cancer specimens (32 nonamplified and 32 amplified) and we compared results obtained through manual scoring and through this new classifier. The new classifier automatically recognized individual nuclei. The automated analysis was followed by an optional human correction, during which the user interacted with the software in order to improve the selection of cell nuclei automatically selected. Overall concordance between manual scoring and automated nucleisampling analysis was 98.4% (100% for nonamplified cases and 96.9% for amplified cases). However, after human correction, concordance between the two methods was 100%. We conclude that the nuclei-based classifier is a new available tool for automated quantitative HER2 FISH signals analysis in nuclei in breast cancer specimen and it can be used for clinical purposes. Virtual slides The virtual slide(s) for this article can be found here:
    Full-text · Article · Feb 2013 · Diagnostic Pathology
Show more