Article

The role of premotor cortex in speech perception: Evidence from fMRI and rTMS

Ahmanson-Lovelace Brain Mapping Center, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
Journal of Physiology-Paris (Impact Factor: 1.9). 05/2008; 102(1-3):31-4. DOI: 10.1016/j.jphysparis.2008.03.003
Source: PubMed

ABSTRACT

This article discusses recent functional magnetic resonance imaging (fMRI) and repetitive Transcranial Magnetic Stimulation (rTMS) data that suggest a direct involvement of premotor cortical areas in speech perception. These new data map well onto psychological theories advocating an active role of motor structures in the perception of speech sounds. It is proposed that the perception of speech is enabled--at least in part--by a process that simulates speech production.

Full-text preview

Available from: ucla.edu
  • Source
    • "The inferior frontal gyrus is thought to be responsible for mapping auditory signals onto articulatory gestures (Myers et al., 2009; Lee et al., 2012; Chevillet et al., 2013). It has been suggested that the role of the inferior frontal gyrus is defined by the linkage between motor observation and imitation , which allows for abstraction of articulatory gestures from the auditory signals, along with the motor cortex and the insula (Ackermann and Riecker, 2004, 2010; Molnar-Szakacs et al., 2005; Pulvermüller, 2005; Pulvermüller et al., 2005, 2006; Skipper et al., 2005; Galantucci et al., 2006; Meister et al., 2007; Iacoboni, 2008; Kilner et al., 2009; Pulvermüller and Fadiga, 2010). On the other hand, both fMRI and transcranial magnetic stimulation (TMS) studies have indicated a functional heterogeneity within the inferior frontal cortex, which includes semantic processing (Homae et al., 2002; Devlin et al., 2003; Gough et al., 2005). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Foreign-accented speech often presents a challenging listening condition. In addition to deviations from the target speech norms related to the inexperience of the nonnative speaker, listener characteristics may play a role in determining intelligibility levels. We have previously shown that an implicit visual bias for associating East Asian faces and foreignness predicts the listeners' perceptual ability to process Korean-accented English audiovisual speech (Yi et al., 2013). Here, we examine the neural mechanism underlying the influence of listener bias to foreign faces on speech perception. In a functional magnetic resonance imaging (fMRI) study, native English speakers listened to native- and Korean-accented English sentences, with or without faces. The participants' Asian-foreign association was measured using an implicit association test (IAT), conducted outside the scanner. We found that foreign-accented speech evoked greater activity in the bilateral primary auditory cortices and the inferior frontal gyri, potentially reflecting greater computational demand. Higher IAT scores, indicating greater bias, were associated with increased BOLD response to foreign-accented speech with faces in the primary auditory cortex, the early node for spectrotemporal analysis. We conclude the following: (1) foreign-accented speech perception places greater demand on the neural systems underlying speech perception; (2) face of the talker can exaggerate the perceived foreignness of foreign-accented speech; (3) implicit Asian-foreign association is associated with decreased neural efficiency in early spectrotemporal processing.
    Full-text · Article · Oct 2014 · Frontiers in Human Neuroscience
  • Source
    • "According to this theory, during speech perception, motor primitives are activated as a result of an acoustically evoked motor resonance. This theory is supported by the observations that passive listening to syllables involves motor and premotor areas (Fadiga, Craighero, Buccino, & Rizzolatti, 2002; Iacoboni, 2008; Pulvermüller et al., 2006) and that the presupplementary motor area is involved in the perception of degraded speech (Adank & Devlin, 2010; Shahin, Bishop, & Miller, 2009). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Dyslexia is a language-based neurodevelopmental disorder. It is characterized as a persistent deficit in reading and spelling. These difficulties have been shown to result from an underlying impairment of the phonological component of language, possibly also affecting speech perception. Although there is little evidence for such a deficit under optimal, quiet listening conditions, speech perception difficulties in adults with dyslexia are often reported under more challenging conditions, such as when speech is masked by noise. Previous studies have shown that these difficulties are more pronounced when the background noise is speech and when little spatial information is available to facilitate differentiation between target and background sound sources. In this study, we investigated the neuroimaging correlates of speech-in-speech perception in typical readers and participants with dyslexia, focusing on the effects of different listening configurations. Fourteen adults with dyslexia and 14 matched typical readers performed a subjective intelligibility rating test with single words presented against concurrent speech during functional magnetic resonance imaging (fMRI) scanning. Target words were always presented with a four-talker background in one of three listening configurations: Dichotic, Binaural or Monaural. The results showed that in the Monaural configuration, in which no spatial information was available and energetic masking was maximal, intelligibility was severely decreased in all participants, and this effect was particularly strong in participants with dyslexia. Functional imaging revealed that in this configuration, participants partially compensate for their poorer listening abilities by recruiting several areas in the cerebral networks engaged in speech perception. In the Binaural configuration, participants with dyslexia achieved the same performance level as typical readers, suggesting that they were able to use spatial information when available. This result was, however, associated with increased activation in the right superior temporal gyrus, suggesting the need to reallocate neural resources to overcome speech-in-speech difficulties. Taken together, these results provide further understanding of the speech-in-speech perception deficit observed in dyslexia.
    Full-text · Article · Jun 2014 · Neuropsychologia
  • Source
    • "According to this theory, during speech perception, motor primitives are activated as a result of an acoustically evoked motor resonance. This theory is supported by the observations that passive listening to syllables involves motor and premotor areas (Fadiga, Craighero, Buccino, & Rizzolatti, 2002; Iacoboni, 2008; Pulvermüller et al., 2006) and that the presupplementary motor area is involved in the perception of degraded speech (Adank & Devlin, 2010; Shahin, Bishop, & Miller, 2009). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Dyslexia is a language-based neurodevelopmental disorder. It is characterized as a persistent deficit in reading and spelling. These difficulties have been shown to result from an underlying impairment of the phonological component of language, possibly also affecting speech perception. Although there is little evidence for such a deficit under optimal, quiet listening conditions, speech perception difficulties in adults with dyslexia are often reported under more challenging conditions, such as when speech is masked by noise. Previous studies have shown that these difficulties are more pronounced when the background noise is speech and when little spatial information is available to facilitate differentiation between target and background sound sources. In this study, we investigated the neuroimaging correlates of speech-in-speech perception in typical readers and participants with dyslexia, focusing on the effects of different listening configurations. Fourteen adults with dyslexia and 14 matched typical readers performed a subjective intelligibility rating test with single words presented against concurrent speech during functional magnetic resonance imaging (fMRI) scanning. Target words were always presented with a four-talker background in one of three listening configurations: Dichotic, Binaural or Monaural. The results showed that in the Monaural configuration, in which no spatial information was available and energetic masking was maximal, intelligibility was severely decreased in all participants, and this effect was particularly strong in participants with dyslexia. Functional imaging revealed that in this configuration, participants partially compensate for their poorer listening abilities by recruiting several areas in the cerebral networks engaged in speech perception. In the Binaural configuration, participants with dyslexia achieved the same performance level as typical readers, suggesting that they were able to use spatial information when available. This result was, however, associated with increased activation in the right superior temporal gyrus, suggesting the need to reallocate neural resources to overcome speech-in-speech difficulties. Taken together, these results provide further understanding of the speech-in-speech perception deficit observed in dyslexia.
    Full-text · Article · Jun 2014 · Neuropsychologia
Show more