The retina is exquisitely sensitive to age-related processes, and, in many cases, these can precipitate progressive and profound loss of vision. Many asymptomatic abnormalities that accrue in the outer retina as we get older can serve as a sinister preamble to age-related macular degeneration (AMD). This condition remains the leading cause of irreversible blindness in industrialized countries, but its precise pathogenesis has yet to be completely elucidated. Over recent years, increasing evidence has suggested that the accumulation of advanced glycation end products (AGEs) and activation of the receptor for AGEs in the outer retina could play a significant role in the initiation and progression of AMD. The current review outlines this evidence and indicates how products of Maillard chemistry could be used as robust markers for outer retinal aging and susceptibility to AMD. The utility of Raman spectroscopy to measure AGE adducts in human tissues is presented. The methodology reinforces the association between AGE formation and retinal aging and provides exciting possibilities for assessing these pathogenic agents in the living eye and, perhaps, for providing a valuable index for AMD susceptibility.