Measurement of Neutrophil Adhesion Under Conditions Mimicking Blood Flow

Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT, USA.
Methods in Molecular Biology (Impact Factor: 1.29). 02/2007; 412:239-56. DOI: 10.1007/978-1-59745-467-4_16
Source: PubMed


Neutrophil migration from blood into tissues is required for effective innate immune responses against infection. Adhesion of the neutrophil in blood to the vascular endothelium and eventual migration through the vessel wall and accumulation at the site of infection involves different classes of adhesion molecules. In vivo intravital microscopy studies show that different adhesion molecules mediate binding events under shear forces associated with blood flow vs binding events that take place under static conditions. To fully analyze the function of these adhesion molecules in vitro, assays must reflect the hemodynamic forces associated with blood flow. We outline two approaches used to study neutrophil adhesion under conditions that mimic blood flow.

Download full-text


Available from: Bruce Walcheck, May 27, 2014
  • Source
    • "However, these static assays lack the in vivo complex microcirculation environment, in which the presence of physiological fluid flow and geometric features can determine spatiotemporal changes in hemodynamic conditions and factors impacting adhesion (Fahim, 2003). Therefore, in recent years in vitro flow chambers characterized by a simple geometry and defined flow conditions have been used to study the adhesive interactions between particles/cells and adhesion molecules of the endothelium (Decuzzi et al., 2007; Haun and Hammer, 2008; Jutila et al., 2007; Sang et al., 2007; Sperandio et al., 2006). With the advancement of MEMS-based microfluidic systems during the last few years, micro-scale flow chambers have been developed to accurately reproduce the in vivo conditions (e.g. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Particle adhesion in vivo is highly dependent on the microvascular environment comprising of unique anatomical, geometrical, physiological fluid flow conditions and cell-particle and cell-cell interactions. Hence, proper design of vascular-targeted drug carriers that efficiently deliver therapeutics to the targeted cells or tissue at effective concentrations must account for these complex conditions observed in vivo. In this study, we build upon our previous results with the goal of characterizing the effects of bifurcations and their corresponding angle on adhesion of functionalized particles and neutrophils to activated endothelium. Our hypothesis is that adhesion is significantly affected by the type of biochemical interactions between particles and vessel wall as well as the presence of bifurcations and their corresponding angle. Here, we investigate adhesion of functionalized particles (2μm and 7μm microparticles) to protein coated channels as well as adhesion of human neutrophils to human endothelial cells under various physiological flow conditions in microfluidic bifurcating channels comprising of different contained angles (30°, 60°, 90°, or 120°). Our findings indicate that both functionalized particle and neutrophil adhesion propensity increases with a larger bifurcation angle. Moreover, the difference in adhesion patterns of neutrophils and rigid, similar sized (7μm) particles is more apparent in the junction regions with a larger contained angle. By selecting the right particle size range, enhanced targeted binding of vascular drug carriers can be achieved along with a higher efficacy at optimal drug dosage. Hence, vascular drug particle design needs to be tailored to account for higher binding propensity at larger bifurcation angles. Copyright © 2015. Published by Elsevier Inc.
    Full-text · Article · Feb 2015 · Microvascular Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The recruitment of leukocytes from circulation to sites of inflammation requires several families of adhesion molecules among which are selectins expressed on a variety of cells. In addition, they have also been shown to play key roles in the activation of cells in inflammation. To explore the collective role of E-, L-, and P- selectins in OVA-induced Th2 mediated response in acute asthma pathophysiology, ELP-/- mice were used and compared with age-matched wildtype (WT). Asthma phenotype was assessed by measuring pulmonary function, inflammation and OVA-specific serum IgE, which were completely abrogated in ELP-/- mice. Adoptive transfer of sensitized L selectin+CD4+ T cells into naïve ELP-/- mice which post-OVA challenge, developed asthma, suggesting that L-selectin may be critically involved in the onset of Th2 response in asthma. Tissue resident ELP-deficient cells were otherwise functionally competent as proved by normal proliferative response. Conclusions: Comparative studies between ELP-/- and WT mice uncovered functional roles of these three integrins in inflammatory response in allergic asthma. All three selectins seem to impede inflammatory migration while only L-selectin also possibly regulates activation of specific T cell subsets in lung and airways.
    Full-text · Article · Aug 2011 · Journal of Inflammation
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neutrophils are the most abundant type of white blood cell. They form an essential part of the innate immune system. During acute inflammation, neutrophils are the first inflammatory cells to migrate to the site of injury. Recruitment of neutrophils to an injury site is a stepwise process that includes first, dilation of blood vessels to increase blood flow; second, microvascular structural changes and escape of plasma proteins from the bloodstream; third, rolling, adhesion and transmigration of the neutrophil across the endothelium; and fourth accumulation of neutrophils at the site of injury. A wide array of in vivo and in vitro methods has evolved to enable the study of these processes. This method focuses on neutrophil transmigration across human endothelial cells. One popular method for examining the molecular processes involved in neutrophil transmigration utilizes human neutrophils interacting with primary human umbilical vein endothelial cells (HUVEC). Neutrophil isolation has been described visually elsewhere; thus this article will show the method for isolation of HUVEC. Once isolated and grown to confluence, endothelial cells are activated resulting in the upregulation of adhesion and activation molecules. For example, activation of endothelial cells with cytokines like TNF-α results in increased E-selectin and IL-8 expression. E-selectin mediates capture and rolling of neutrophils and IL-8 mediates activation and firm adhesion of neutrophils. After adhesion neutrophils transmigrate. Transmigration can occur paracellularly (through endothelial cell junctions) or transcellularly (through the endothelial cell itself). In most cases, these interactions occur under flow conditions found in the vasculature. The parallel plate flow chamber is a widely used system that mimics the hydrodynamic shear stresses found in vivo and enables the study of neutrophil recruitment under flow condition in vitro. Several companies produce parallel plate flow chambers and each have advantages and disadvantages. If fluorescent imaging is needed, glass or an optically similar polymer needs to be used. Endothelial cells do not grow well on glass. Here we present an easy and rapid method for phase-contrast, DIC and fluorescent imaging of neutrophil transmigration using a low volume ibidi channel slide made of a polymer that supports the rapid adhesion and growth of human endothelial cells and has optical qualities that are comparable to glass. In this method, endothelial cells were grown and stimulated in an ibidi μslide. Neutrophils were introduced under flow conditions and transmigration was assessed. Fluorescent imaging of the junctions enabled real-time determination of the extent of paracellular versus transcellular transmigration.
    No preview · Article · Aug 2012 · Journal of Visualized Experiments
Show more