Biological Substrates of Emotional Reactivity and Regulation in Adolescence During an Emotional Go-Nogo Task

The Sackler Institute for Developmental Psychobiology, Weill Medical College of Cornell University, New York, New York, USA.
Biological psychiatry (Impact Factor: 10.26). 06/2008; 63(10):927-34. DOI: 10.1016/j.biopsych.2008.03.015
Source: PubMed


Adolescence is a transition period from childhood to adulthood that is often characterized by emotional instability. This period is also a time of increased incidence of anxiety and depression, underscoring the importance of understanding biological substrates of behavioral and emotion regulation during adolescence. Developmental changes in the brain in concert with individual predispositions for anxiety might underlie the increased risk for poor outcomes reported during adolescence. We tested the hypothesis that difficulties in regulating behavior in emotional contexts in adolescents might be due to competition between heightened activity in subcortical emotional processing systems and immature top-down prefrontal systems. Individual differences in emotional reactivity might put some teens at greater risk during this sensitive transition in development.
We examined the association between emotion regulation and frontoamygdala circuitry in 60 children, adolescents, and adults with an emotional go-nogo paradigm. We went beyond examining the magnitude of neural activity and focused on neural adaptation within this circuitry across time with functional magnetic resonance imaging.
Adolescents showed exaggerated amygdala activity relative to children and adults. This age-related difference decreased with repeated exposures to the stimuli, and individual differences in self-ratings of anxiety predicted the extent of adaptation or habituation in amygdala. Individuals with higher trait anxiety showed less habituation over repeated exposures. This failure to habituate was associated with less functional connectivity between ventral prefrontal cortex and amygdala.
These findings suggest that exaggerated emotional reactivity during adolescence might increase the need for top-down control and put individuals with less control at greater risk for poor outcomes.

Download full-text


Available from: Adriana Galvan
  • Source
    • "The proposition that increased attentional control (via WM training) can impact positively on anxiety symptoms is consistent with a broader literature that has highlighted the role of the PFC in emotional regulation (e.g., Davidson et al., 2000). It also links to related studies that have found a negative association between PFC activation with brain regions linked to fearful responding, including the amygdala (Etkin et al., 2006; Hare et al., 2008). For example, research has demonstrated that adults who report elevated anxiety show reduced ability to utilize attentional processes associated with the PFC (including the Anterior Cingulate Cortex and the lateral PFC) and where this pattern of activation is argued to maintain threat biases in anxiety (Öhman, 2005; reviews by Bishop, 2007). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Research indicates that cognitive processes linked to the detection of threat stimuli are associated with poor attentional control, placing children and adolescents at increased risk for the development of anxious affect. The current study aimed to provide preliminary data to assess whether an intervention designed to improve attentional control (via working memory; WM) would lead to better performance in tests of WM and would be associated with positive changes in symptoms of trait and test anxiety, increased inhibitory control and reduced attention to threat. Forty adolescents aged 11–14 years who reported elevated anxiety and low attentional control were randomly allocated to a WM training or an active cognitive behavioural therapy (CBT) control group. Post intervention, WM training was associated with greater improvements (versus. CBT) in trained WM tasks. Both groups, however, reported fewer anxiety symptoms, demonstrated increased inhibitory control and a reduction in attentional biases to threat post intervention and these results were maintained at follow up. The study provides indicative evidence which suggests that WM training has similar benefits to a more traditional CBT intervention on reduced anxiety and attentional biases for threat. Future research should aim to replicate the findings in a large sample size and explore the broader impact of training on day-to-day functioning. In addition, further research is needed to identify which participants benefit most from different interventions (using baseline characteristics) on treatment compliance and outcome.
    Preview · Article · Feb 2016 · Frontiers in Psychology
    • "Our study specifically aimed at testing these switching components and their neural underpinning in mood disorder patients. Further, our task design also allowed us to examine whether these switching components are differentially modulated when processing positive or negative emotional information[Hare et al., 2008;Piguet et al., 2013;Sagaspe et al., 2011]. Because these deficits might represent a common and specific trait across the mood disorder spectrum, underlying cognitive dysfunction in these patients independent of mood anomalies, we took a dimensional approach combining patients with different clinical symptoms, as recently recommended in order to extract valid research domain criteria surpassing diagnostic boundaries (http://www. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Impairment in mental flexibility may be a key component contributing to cardinal cognitive symptoms among mood disorders patients, particularly thought control disorders. Impaired ability to switch from one thought to another might reflect difficulties in either generating new mental states, inhibiting previous states, or both. However, the neural underpinnings of impaired cognitive flexibility in mood disorders remain largely unresolved. We compared a group of mood disorders patients (n = 29) and a group of matched healthy subjects (n = 32) on a novel task-switching paradigm involving happy and sad faces, that allowed us to separate generation of a new mental set (Switch Cost) and inhibition of the previous set during switching (Inhibition Cost), using fMRI. Behavioral data showed a larger Switch Cost in patients relative to controls, but the average Inhibition Cost did not differ between groups. At the neural level, a main effect of group was found with stronger activation of the subgenual cingulate cortex in patients. The larger Switch Cost in patients was reflected by a stronger recruitment of brain regions involved in attention and executive control, including the left intraparietal sulcus, precuneus, left inferior fontal gyrus, and right anterior cingulate. Critically, activity in the subgenual cingulate cortex was not downregulated by inhibition in patients relative to controls. In conclusion, mood disorder patients have exaggerated Switch Cost relative to controls, and this deficit in cognitive flexibility is associated with increased activation of the fronto-parietal attention networks, combined with impaired modulation of the subgenual cingulate cortex when inhibition of previous mental states is needed. Hum Brain Mapp, 2016. © 2016 Wiley Periodicals, Inc.
    No preview · Article · Jan 2016 · Human Brain Mapping
    • "It is of interest that age-related reductions in amygdala activation were observed for reappraisal, but were not associated with general emotional reactivity to aversive social-affective stimuli. This is inconsistent with numerous studies that have reported heightened amygdala activation among adolescents, versus adults, to facial expressions[Gee et al., 2013;Guyer et al., 2008;Hare et al., 2008;Killgore et al., 2001;Monk et al., 2003]and IAPS images[Vasa et al., 2011;Vink et al., 2014]. However, unlike the majority of these studies, we used a paradigm designed to distinguish developmental changes in emotional reactivity from developmental changes in reappraisal. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Few studies have examined the neural correlates of emotion regulation across adolescence and young adulthood. Existing studies of cognitive reappraisal indicate that improvements in regulatory efficiency may develop linearly across this period, in accordance with maturation of prefrontal cortical systems. However, there is also evidence for adolescent differences in reappraisal specific to the activation of "social-information processing network" regions, including the amygdala and temporal-occipital cortices. Here, we use fMRI to examine the neural correlates of emotional reactivity and reappraisal in response to aversive social imagery in a group of 78 adolescents and young adults aged 15-25 years. Within the group, younger participants exhibited greater activation of temporal-occipital brain regions during reappraisal in combination with weaker suppression of amygdala reactivity-the latter being a general correlate of successful reappraisal. Further analyses demonstrated that these age-related influences on amygdala reactivity were specifically mediated by activation of the fusiform face area. Overall, these findings suggest that enhanced processing of salient social cues (i.e., faces) increases reactivity of the amygdala during reappraisal and that this relationship is stronger in younger adolescents. How these relationships contribute to well-known vulnerabilities of emotion regulation during this developmental period will be an important topic for ongoing research. Hum Brain Mapp, 2015. © 2015 Wiley Periodicals, Inc.
    No preview · Article · Nov 2015 · Human Brain Mapping
Show more