Improving in-hospital cardiac arrest process and outcomes with performance debriefing. Arch Intern Med

Section of General Internal Medicine, University of Chicago, Chicago, Illinois, USA.
Archives of internal medicine (Impact Factor: 17.33). 05/2008; 168(10):1063-9. DOI: 10.1001/archinte.168.10.1063
Source: PubMed


Recent investigations have documented poor cardiopulmonary resuscitation (CPR) performance in clinical practice. We hypothesized that a debriefing intervention using CPR quality data from actual in-hospital cardiac arrests (resuscitation with actual performance integrated debriefing [RAPID]) would improve CPR performance and initial patient survival.
Internal medicine residents at a university hospital attended weekly debriefing sessions of the prior week's resuscitations, between March 2006 and February 2007, reviewing CPR performance transcripts obtained from a CPR-sensing and feedback-enabled defibrillator. Objective metrics of CPR performance and initial return of spontaneous circulation were compared with a historical cohort in which a similar feedback-delivering defibrillator was used but without RAPID.
Cardiopulmonary resuscitation quality and outcome data from 123 patients resuscitated during the intervention period were compared with 101 patients in the baseline cohort. Compared with the control period, the mean (SD) ventilation rate decreased (13 [7]/min vs 18 [8]/min; P < .001) and compression depth increased (50 [10] vs 44 [10] mm; P = .001), among other CPR improvements. These changes correlated with an increase in the rate of return of spontaneous circulation in the RAPID group (59.4% vs 44.6%; P = .03) but no change in survival to discharge (7.4% vs 8.9%; P = .69).
The combination of RAPID and real-time audiovisual feedback improved CPR quality compared with the use of feedback alone and was associated with an increased rate of return of spontaneous circulation. Cardiopulmonary resuscitation sensing and recording devices allow for methods of debriefing that were previously available only for simulation-based education; such methods have the potential to fundamentally alter resuscitation training and improve patient outcomes. Identifier: NCT00228293.

Download full-text


Available from: Lance B Becker, Nov 22, 2014
  • Source
    • "In order to standardize the quality of cardiopulmonary resuscitation (CPR) and simultaneous monitoring, certain mechanical or physiological parameters are considered.1,2 Discovery of positive relationship between the cardiac output and end-tidal carbondioxide pressure (PetCO2) has led to use of capnography during cardiopulmonary resuscitation.3,4 "
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective: To measure end-tidal carbon dioxide pressure (PetCO2) in preset interval in order to evaluate the efficiency of cardiopulmonary resuscitation (CPR) performed on patients in cardiopulmonary arrest, evaluate the validity of PetCO2 in predicting the mortality and finally assess the PetCO2 levels of the patients in cardiopulmonary arrest based on the initial presenting rhythm. Methods: This prospective study was conducted at the Ankara Training and Research Hospital on patients who presented with cardiopulmonary arrest. Standard ACLS (Advanced Cardiac Life Support) protocols were performed. Patients were categorized in two groups based on their rhythms as Ventricular Fibrillation and Asystole. Patients’ PetCO2 values were recorded. Results: PetCO2 levels of the Return of Spontaneous Circulation (ROSC) group in the 5th, 10th, 15th and 20th minutes were significantly higher compared to the exitus group (p<0.001). In distinguishing ROSC and exitus, PetCO2 measurements within 5-20 minute intervals showed highest performance on the 20th and lowest on the 5th minutes. Conclusion: PetCO2 values are higher in the ROSC group. During the CPR, the most reliable time for ROSC estimation according to PetCO2 values is 20th minute. None of the patients who had PetCO2 levels less than 14 mmHg survived.
    Full-text · Article · Feb 2014 · Pakistan Journal of Medical Sciences Online
  • Source
    • "The presence of a physician before hospital arrival is believed to lead to effective cardiopulmonary resuscitation (CPR) for patients with out-of-hospital cardiac arrest (OHCA) [1]–[3]. Several studies have described ambulance crews staffed with a physician including cardiac ambulance crews [4], helicopter ambulance teams [5] and physician-manned ambulance (PMA) teams comprised of two paramedics and an anesthesiologist [6]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The presence of a physician seems to be beneficial for pre-hospital cardiopulmonary resuscitation (CPR) of patients with out-of-hospital cardiac arrest. However, the effectiveness of a physician's presence during CPR before hospital arrival has not been established. We conducted a prospective, non-randomized, observational study using national data from out-of-hospital cardiac arrests between 2005 and 2010 in Japan. We performed a propensity analysis and examined the association between a physician's presence during an ambulance car ride and short- and long-term survival from out-of-hospital cardiac arrest. Specifically, a full non-parsimonious logistic regression model was fitted with the physician presence in the ambulance as the dependent variable; the independent variables included all study variables except for endpoint variables plus dummy variables for the 47 prefectures in Japan (i.e., 46 variables). In total, 619,928 out-of-hospital cardiac arrest cases that met the inclusion criteria were analyzed. Among propensity-matched patients, a positive association was observed between a physician's presence during an ambulance car ride and return of spontaneous circulation (ROSC) before hospital arrival, 1-month survival, and 1-month survival with minimal neurological or physical impairment (ROSC: OR = 1.84, 95% CI 1.63-2.07, p = 0.00 in adjusted for propensity and all covariates); 1-month survival: OR = 1.29, 95% CI 1.04-1.61, p = 0.02 in adjusted for propensity and all covariates); cerebral performance category (1 or 2): OR = 1.54, 95% CI 1.03-2.29, p = 0.04 in adjusted for propensity and all covariates); and overall performance category (1 or 2): OR = 1.50, 95% CI 1.01-2.24, p = 0.05 in adjusted for propensity and all covariates). A prospective observational study using national data from out-of-hospital cardiac arrests shows that a physician's presence during an ambulance car ride was independently associated with increased short- and long-term survival.
    Full-text · Article · Jan 2014 · PLoS ONE
  • Source
    • "However, another option is to stop a scenario after a critical event has occurred and provide immediate feedback and instruction about the diagnosis or treatment of a disease process, healthcare provider communication, or other pre-determined learning objective. Post-event debriefing: Multiple debriefing models have been described in the literature (Thatcher & Robinson 1985; Petranek 2000; Gaba 2001; Owen & Follows 2006; Rudolph et al. 2006; Edelson 2009). A detailed description of these models is beyond the scope of this work, and we refer the reader to the references for further information. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Over the past two decades, there has been an exponential and enthusiastic adoption of simulation in healthcare education internationally. Medicine has learned much from professions that have established programs in simulation for training, such as aviation, the military and space exploration. Increased demands on training hours, limited patient encounters, and a focus on patient safety have led to a new paradigm of education in healthcare that increasingly involves technology and innovative ways to provide a standardized curriculum. A robust body of literature is growing, seeking to answer the question of how best to use simulation in healthcare education. Building on the groundwork of the Best Evidence in Medical Education (BEME) Guide on the features of simulators that lead to effective learning, this current Guide provides practical guidance to aid educators in effectively using simulation for training. It is a selective review to describe best practices and illustrative case studies. This Guide is the second part of a two-part AMEE Guide on simulation in healthcare education. The first Guide focuses on building a simulation program, and discusses more operational topics such as types of simulators, simulation center structure and set-up, fidelity management, and scenario engineering, as well as faculty preparation. This Guide will focus on the educational principles that lead to effective learning, and include topics such as feedback and debriefing, deliberate practice, and curriculum integration - all central to simulation efficacy. The important subjects of mastery learning, range of difficulty, capturing clinical variation, and individualized learning are also examined. Finally, we discuss approaches to team training and suggest future directions. Each section follows a framework of background and definition, its importance to effective use of simulation, practical points with examples, and challenges generally encountered. Simulation-based healthcare education has great potential for use throughout the healthcare education continuum, from undergraduate to continuing education. It can also be used to train a variety of healthcare providers in different disciplines from novices to experts. This Guide aims to equip healthcare educators with the tools to use this learning modality to its full capability.
    Full-text · Article · Aug 2013 · Medical Teacher
Show more