Distribution of the A3 subunit of the cyclic nucleotide-gated ion channels in the main olfactory bulb of the rat

Departamento de Biología Celular, Unidad de Neurobiología, Facultad de Ciencias Biológicas, Universidad de Valencia, Street Dr. Moliner 50, Burjasot, Spain.
Neuroscience (Impact Factor: 3.36). 07/2008; 153(4):1164-76. DOI: 10.1016/j.neuroscience.2008.03.012
Source: PubMed


Previous data suggest that cyclic GMP (cGMP) signaling can play key roles in the circuitry of the olfactory bulb (OB). Therefore, the expression of cGMP-selective subunits of the cyclic nucleotide-gated ion channels (CNGs) can be expected in this brain region. In the present study, we demonstrate a widespread expression of the cGMP-selective A3 subunit of the cyclic nucleotide-gated ion channels (CNGA3) in the rat OB. CNGA3 appears in principal cells, including mitral cells and internal, medium and external tufted cells. Moreover, it appears in two populations of interneurons, including a subset of periglomerular cells and a group of deep short-axon cells. In addition to neurons, CNGA3-immunoreactivity is found in the ensheathing glia of the olfactory nerve. Finally, an abundant population of CNGA3-containing cells with fusiform morphology and radial processes is found in the inframitral layers. These cells express doublecortin and have a morphology similar to that of the undifferentiated cells that leave the rostral migratory stream and migrate radially through the layers of the OB. Altogether, our results suggest that CNGA3 can play important and different roles in the OB. Channels composed of this subunit can be involved in the processing of the olfactory information taking place in the bulbar circuitry. Moreover, they can be involved in the function of the ensheathing glia and in the radial migration of immature cells through the bulbar layers.

4 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: The cyclic nucleotide-gated (CNG) channel is a family of nonselective cation channels that open in response to an elevated cyclic nucleotide level. Cyclic nucleotides, particularly cAMP and cGMP, govern a great diversity of cellular functions. While the pivotal roles of CNG channels in the visual and olfactory systems have been well established in the past decade, relatively few studies were performed regarding the functional roles of CNG channels in non-neuronal systems. Cyclic nucleotides and Ca2+ are key signaling molecules in cardiovascular systems. Given that CNG channels are expressed in vascular tissues, several recent studies have explored the possible functional role of CNG channels in cardiovascular systems. This article intends to summarize some recent developments regarding the expression and functional role of CNG channels in the cardiovascular system.
    No preview · Article · Sep 2008 · Future Cardiology
  • [Show abstract] [Hide abstract]
    ABSTRACT: After the division of neuronal precursors, many of the newly generated cells become immature neurons, which migrate to their final destination in the nervous system, extend neurites and make appropriate connections. For most neurons these events occur in a narrow time window and, once in their definitive location, they immediately start the final stages of their differentiation program, remaining immature only for a short time. The main objective of this review is to present and discuss recent data on a peculiar population of cells in the adult brain, which retain an immature neuronal phenotype for an unusually prolonged time. We review and discuss recent evidence on the temporal and spatial origin of these cells, their distribution in rodents and other mammals, their structure and neurochemical phenotype, and their putative fate and function. The review is mainly focused on the population of immature neurons located in the layer II of certain cortical regions, but we will also describe similar populations found in other regions of the peripheral and central nervous systems.
    No preview · Article · Jun 2010 · Archives italiennes de biologie
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although the major mode of transmission for serotonin in the brain is volume transmission, previous anatomical studies have demonstrated that serotonergic axons do form synaptic contacts. The olfactory glomeruli of the olfactory bulb of mammals receive a strong serotonergic innervation from the dorsal and medial raphe nuclei. In the present report, we investigate the synaptic connectivity of these serotonergic axons in the glomerular neuropil of the rat olfactory bulb. Our study shows that serotonergic axons form asymmetrical synaptic contacts on dendrites within the glomerular neuropil. Analyzing the neurochemical nature of the synaptic targets, we have found that 55% of the synapses were on GABA-immunopositive profiles and 45% on GABA-immunonegative profiles. These data indicate that barely half of the contacts were found in GABA-immunonegative profiles and half of the synapses in GABA-positive dendrites belonging to type 1 periglomerular cells. Synaptic contacts from serotonergic axons on dendrites of principal cells cannot be excluded, since some of the GABA-immunonegative postsynaptic profiles contacted by serotonergic axons had the typical ultrastructural features of bulbar principal cell dendrites. Altogether, our results suggest a complex action of the serotonergic system in the modulation of the bulbar circuitry.
    No preview · Article · Aug 2010 · Neuroscience
Show more