Comparison of slow and fast neocortical neuron migration using a new in vitro model

Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
BMC Neuroscience (Impact Factor: 2.67). 02/2008; 9(1):50. DOI: 10.1186/1471-2202-9-50
Source: PubMed


Mutations, toxic insults and radiation exposure are known to slow or arrest the migration of cortical neurons, in most cases by unknown mechanisms. The movement of migrating neurons is saltatory, reflecting the intermittent movement of the nucleus (nucleokinesis) within the confines of the plasma membrane. Each nucleokinetic movement is analogous to a step. Thus, average migration speed could be reduced by lowering step frequency and/or step distance.
To assess the kinetic features of cortical neuron migration we developed a cell culture system that supports fiber-guided migration. In this system, the majority of fiber-apposed cells were neurons, expressed age-appropriate cortical-layer specific markers and migrated during a 30 min imaging period. Comparison of the slowest and fastest quartiles of cells revealed a 5-fold difference in average speed. The major determinant of average speed in slower cells (6-26 microm/hr) was step frequency, while step distance was the critical determinant of average speed in faster cells (>26 microm/hr). Surprisingly, step distance was largely determined by the average duration of the step, rather than the speed of nucleokinesis during the step, which differed by only 1.3-fold between the slowest and fastest quartiles.
Saltatory event frequency and duration, not nucleokinetic speed, are the major determinants of average migration speed in healthy neurons. Alteration of either saltatory event frequency or duration should be considered along with nucleokinetic abnormalities as possible contributors to pathological conditions.

Download full-text


Available from: Laurel H Carney
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuronal migration is an essential process for the development of the cerebral cortex. We have previously shown that LKB1, an evolutionally conserved polarity kinase, plays a critical role in neuronal migration in the developing neocortex. Here we show that LKB1 mediates Ser9 phosphorylation of GSK3beta to inactivate the kinase at the leading process tip of migrating neurons in the developing neocortex. This enables the microtubule plus-end binding protein adenomatous polyposis coli (APC) to localize at the distal ends of microtubules in the tip, thereby stabilizing microtubules near the leading edge. We also show that LKB1 activity, Ser9 phosphorylation of GSK3beta, and APC binding to the distal ends of microtubules are required for the microtubule stabilization in the leading process tip, centrosomal forward movement, and neuronal migration. These findings suggest that LKB1-induced spatial control of GSK3beta and APC at the leading process tip mediates the stabilization of microtubules within the tip and is critical for centrosomal forward movement and neuronal migration in the developing neocortex.
    Preview · Article · Jun 2010 · The Journal of Neuroscience : The Official Journal of the Society for Neuroscience
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell migration in a cultured neuronal network presents an obstacle to selectively measuring the activity of the same neuron over a long period of time. Here we report the use of nanopillar arrays to pin the position of neurons in a noninvasive manner. Vertical nanopillars protruding from the surface serve as geometrically better focal adhesion points for cell attachment than a flat surface. The cell body mobility is significantly reduced from 57.8 μm on a flat surface to 3.9 μm on nanopillars over a 5 day period. Yet, neurons growing on nanopillar arrays show a growth pattern that does not differ in any significant way from that seen on a flat substrate. Notably, while the cell bodies of neurons are efficiently anchored by the nanopillars, the axons and dendrites are free to grow and elongate into the surrounding area to develop a neuronal network, which opens up opportunities for long-term study of the same neurons in connected networks.
    Preview · Article · Oct 2010 · Nano Letters
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Carbon nanotube substrates are promising candidates for biological applications and devices. Interfacing of these carbon nanotubes with neurons can be controlled by chemical modifications. In this study, we investigated how chemical surface functionalization of multi-walled carbon nanotube arrays (MWNT-A) influences neuronal adhesion and network organization. Functionalization of MWNT-A dramatically modifies the length of neurite fascicles, cluster inter-connection success rate, and the percentage of neurites that escape from the clusters. We propose that chemical functionalization represents a method of choice for developing applications in which neuronal patterning on MWNT-A substrates is required.
    Full-text · Article · May 2011 · Nanotechnology
Show more