Immunomodulator Effect of Picroliv and its Potential in Treatment Against Resistant Plasmodium yoelii (MDR) Infection in Mice

Department of Biochemistry, J. N. Medical College, Aligarh Muslim University, Aligarh, India.
Pharmaceutical Research (Impact Factor: 3.42). 07/2008; 25(10):2312-9. DOI: 10.1007/s11095-008-9631-2
Source: PubMed


The present study was envisaged to evaluate potential of combination therapy comprising of immunomodulator picroliv and antimalarial chloroquine against drug resistant Plasmodium yoelii (P. yoelii) infection in BALB/c mice.
The immunomodulatory potential of picroliv was established by immunizing animals with model antigen along with picroliv. Immune response was assessed using T-cell proliferation assay and also by determining the antibody isotype-profile induced in the immunized mice. In the next set of experiment, prophylactic potential of picroliv to strengthen antimalarial properties of chloroquine against P. yoelii (MDR) infection in BALB/c mice was assessed.
T-cell proliferation as well as antibody production study reveals that picroliv helps in evoking strong immuno-potentiating response against model antigen in the immunized mice. Co-administration of picroliv enhances efficacy of CHQ against experimental murine malaria.
The activation of host immune system can increase the efficacy of chloroquine for suppression of drug resistant malaria infection in BALB/c mice.

Download full-text


Available from: Vishal Kumar Soni
  • Source
    • "According to reports, chloroquine and malaria are known to cause oxidative stress.[7] Complementary use of antioxidants of natural origin with conventional antimalarial like chloroquine has been used in the past, particularly with those whose safety and efficacies are known and are employed in the treatment of malaria as an adjunct.[8910] The use of an antioxidant will undoubtedly reduce the oxidative stress caused by parasite and chloroquine. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: The aim of the study was to investigate the effects of dietary combination of Nigella sativa seed and oil extracts with chloroquine (CQ), and how these combinations enhance CQ efficacy in mice infected with Plasmodium berghei and their survival rates. Materials and Methods: Chloroquine sensitive P. berghei, NK65 strain was used for the study. This was passaged intraperitoneally into albino mice with a 0.2ml standard inoculum consisting of 106 parasitized erythrocyte suspension in phosphate buffer solution (PBS). Parasitaemia was ascertained by microscopical examination of blood films under oil immersion at X100 magnification. Results: Nigella sativa seed in feed (NSSF), NSSF + CQ on day 4, produced 86.1% and 86.0% suppression respectively, while Nigella sativa oil extract in feed (NSOF) and in combination with CQ had 86.0% and 99.9% suppression respectively. The degree of suppression with the combination was significantly higher compared to CQ alone (P < 0.001) (36.1%). Complete parasitaemia clearance was obtained on the 20th and 15th day of treatment for NSSF, NSSF + CQ respectively, while that for NSOF and NSOF + CQ was on days 26 and 12 respectively. For CQ parasite clearance was 12 days with treatment. Also, the combinastion of 10 mg/kg Nigella sativa oil treatment injected intraperitoneally with oral CQ produced very significant parasite suppression (P < 0.0001) (93%). Survival rate in NSSF and NSOF and in combination with CQ groups was 100 and 60.0% for CQ alone. Conclusions: This study shows that the use of Nigella sativa seed and oil extract as dietary supplements in combination with CQ has a potential in enhancing the efficacy of CQ and could be of benefit in management of malaria.
    Full-text · Article · May 2014 · Pharmacognosy Magazine
  • Source
    • "Picroliv, a standardized fraction isolated from the ethanol extract of the root and the rhizome of Picrorhiza kurroa (Scrophulariaceae) has been reported to activate the host immune system. Co-administration of Picroliv was found to enhance efficacy of chloroquine against experimental murine malaria [64]. A traditional Chinese mixture known as Juzen-taiho-to suppressed murine malaria by increasing the production of antibodies and interferon gamma [65]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background In traditional medicine whole plants or mixtures of plants are used rather than isolated compounds. There is evidence that crude plant extracts often have greater in vitro or/and in vivo antiplasmodial activity than isolated constituents at an equivalent dose. The aim of this paper is to review positive interactions between components of whole plant extracts, which may explain this. Methods Narrative review. Results There is evidence for several different types of positive interactions between different components of medicinal plants used in the treatment of malaria. Pharmacodynamic synergy has been demonstrated between the Cinchona alkaloids and between various plant extracts traditionally combined. Pharmacokinetic interactions occur, for example between constituents of Artemisia annua tea so that its artemisinin is more rapidly absorbed than the pure drug. Some plant extracts may have an immunomodulatory effect as well as a direct antiplasmodial effect. Several extracts contain multidrug resistance inhibitors, although none of these has been tested clinically in malaria. Some plant constituents are added mainly to attenuate the side-effects of others, for example ginger to prevent nausea. Conclusions More clinical research is needed on all types of interaction between plant constituents. This could include clinical trials of combinations of pure compounds (such as artemisinin + curcumin + piperine) and of combinations of herbal remedies (such as Artemisia annua leaves + Curcuma longa root + Piper nigum seeds). The former may enhance the activity of existing pharmaceutical preparations, and the latter may improve the effectiveness of existing herbal remedies for use in remote areas where modern drugs are unavailable.
    Full-text · Article · Mar 2011 · Malaria Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A compilation of new naturally occurring iridoids and secoiridoids including their glycosides, esters, aglycones, derivatives and dimers reported during mid 2008-2010 is provided with available physical and spectral data: mp, [α](D), UV, IR, circular dichroism (CD), (1)H- and (13)C-NMR as well as natural source with family and references. The important bioactivity of new and known iridoids and secoiridoids reported during this period is also highlighted.
    Preview · Article · Jul 2011 · Chemical & pharmaceutical bulletin
Show more