ArticlePDF Available

Natural Variability of Greenland Climate, Vegetation, and Ice Volume During the Past Million Years

Authors:

Abstract and Figures

The response of the Greenland ice sheet to global warming is a source of concern notably because of its potential contribution to changes in the sea level. We demonstrated the natural vulnerability of the ice sheet by using pollen records from marine sediment off southwest Greenland that indicate important changes of the vegetation in Greenland over the past million years. The vegetation that developed over southern Greenland during the last interglacial period is consistent with model experiments, suggesting a reduced volume of the Greenland ice sheet. Abundant spruce pollen indicates that boreal coniferous forest developed some 400,000 years ago during the "warm" interval of marine isotope stage 11, providing a time frame for the development and decline of boreal ecosystems over a nearly ice-free Greenland.
Content may be subject to copyright.
DOI: 10.1126/science.1153929
, 1622 (2008); 320Science
et al.Anne de Vernal,
and Ice Volume During the Past Million Years
Natural Variability of Greenland Climate, Vegetation,
www.sciencemag.org (this information is current as of June 20, 2008 ):
The following resources related to this article are available online at
http://www.sciencemag.org/cgi/content/full/320/5883/1622
version of this article at:
including high-resolution figures, can be found in the onlineUpdated information and services,
http://www.sciencemag.org/cgi/content/full/320/5883/1622/DC1
can be found at: Supporting Online Material
found at:
can berelated to this articleA list of selected additional articles on the Science Web sites
http://www.sciencemag.org/cgi/content/full/320/5883/1622#related-content
http://www.sciencemag.org/cgi/content/full/320/5883/1622#otherarticles
, 9 of which can be accessed for free: cites 27 articlesThis article
http://www.sciencemag.org/about/permissions.dtl
in whole or in part can be found at: this article
permission to reproduce of this article or about obtaining reprintsInformation about obtaining
registered trademark of AAAS.
is aScience2008 by the American Association for the Advancement of Science; all rights reserved. The title
CopyrightAmerican Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005.
(print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by theScience
on June 20, 2008 www.sciencemag.orgDownloaded from
olivines in the light isotopes of Fe (and the heavy
isotopes of Mg) (16, 20).
The extent of equilibrium isotope fractionation
is mainly controlled by the relative mass dif-
ference between the isotopes, and more fraction-
ation happens in isotopes with a larger relative
mass difference (14, 24).IftheFeisotopicvaria-
tion in the lava lake was produced by equilibrium
isot o pe fract io na ti on , Mg isotopes should show
more significant fractionation than Fe isotopes
because of their larger relative mass difference.
Furthermore, kinetic isotope fractionation driven
by th ermal and chemical diffusion should also
result in larger fractionation in Mg isotopes as
compared with that in Fe isotopes (16, 17, 20).
The absence of Mg isotope fractionation in Kilauea
Iki lavas may result from the low-precision iso-
topic analysis of Mg relative to Fe (e.g., 0.1
versus 0.04), which prevents the detection of
Mg isotopic variation. More likely, the presence
of Fe isotope fractionation and the absence of Mg
isotope fractionation may reflect the influence of
Fe oxidation states on kinetic or equilibrium iso-
tope fractionation (as compared with those of Mg,
two oxidation states of Fe exist in terrestrial mag-
matic systems) (5, 25).
Our study suggests that, unlike Li and Mg
isotopes (2, 3), Fe isotopes fractionate during ba-
saltic differentiation at both whole-rock and crys-
tal scales. Mineral compositions should therefore
be used to help interpret whole-rock basalt Fe
isotopic data. The elevated d
56
Fe of crustal igne-
ous rocks, which is more evolved than that in
basalts, could be explained by fractional crystal-
lization (10).
References and Notes
1. F. Poitrasson, A. N. Halliday, D. C. Lee, S. Levasseur,
N. Teutsch, Earth Planet. Sci. Lett. 223, 253 (2004).
2. F.-Z. Teng, M. Wadhwa, R. T. Helz, Earth Planet. Sci. Lett.
261, 84 (2007).
3. P. B. Tomascak, F. Tera, R. T. Helz, R. J. Walker, Geochim.
Cosmochim. Acta 63, 907 (1999).
4. S. Weyer, D. A. Ionov, Earth Planet. Sci. Lett. 259, 119
(2007).
5. H. M. Williams et al., Earth Planet. Sci. Lett. 235, 435
(2005).
6. B. L. Beard et al., Chem. Geol. 195, 87 (2003).
7. J. A. Schuessler, R. Schoenberg, H. Behrens,
F. von Blanckenburg, Geochim. Cosmochim. Acta 71,
417 (2007).
8. A. Shahar, C. E. Manning, E. D. Young, Earth Planet. Sci.
Lett. 268, 330 (2008).
9. R. Schoenberg, F. von Blanckenburg, Earth Planet. Sci.
Lett. 252, 342 (2006).
10. F. Poitrasson, R. Freydier, Chem. Geol. 222, 132 (2005).
11. R. T. Helz, in Magmatic Processes: Physicochemical
Principles, B. O. Mysen, Ed. (Geochemical Society,
University Park, PA, 1987), vol. 1, pp. 241258.
12. Materials, methods, data, and modeling details are
available as supporting material on Science Online.
13. V. B. Polyakov, R. N. Clayton, J. Horita, S. D. Mineev,
Geochim. Cosmochim. Acta 71, 3833 (2007).
14. E. A. Schauble, in Geochemistry of Non-Traditional Stable
Isotopes, C. M. Johnson, B. L. Beard, F. Albarede, Eds.
(Mineralogical Society of America, Washington, DC,
2004), vol. 55, pp. 65111.
15. N. Dauphas, O. Rouxel, Mass Spectrom. Rev. 25, 515
(2006).
16. F. M. Richter, Geochim. Cosmochim. Acta 71, A839 (2007).
17. F. Huang, C. C. Lundstrom, A. J. Ianno, Geochim.
Cosmochim. Acta 71, A422 (2007).
18. R. T. Helz, H. Kirschenbaum, J. W. Marinenko, Geol. Soc.
Am. Bull. 101, 578 (1989).
19. A. D. Anbar, J. E. Roe, J. Barling, K. H. Nealson, Science
288, 126 (2000).
20. F. M. Richter, E. B. Watson, R. A. Mendybaev,
F.-Z. Teng, P. E. Janney, Geochim. Cosmochim. Acta 72,
206 (2008).
21. R.T.Helz,C.R.Thornber,Bull. Volcanol. 49, 651 (1987).
22. A. Jambon, Geochim. Cosmochim. Acta 44, 1373 (1980).
23. R. T. Helz, U.S. Geol. Surv. Prof. Pap. 1350, 691 (1987).
24. H. C. Urey, J. Chem. Soc. (London) 1947, 562 (1947).
25. H. M. Williams et al., Science 304, 1656 (2004).
26. D. H. Richter, J. P. Eaton, K. J. Murata, W. U. Ault,
H. L. Krivoy, U.S. Geol. Surv. Prof. Pap. 537-E, 1 (1970).
27. R. T. Helz, H. Kirschenbaum, J. W. Marinenko, R. Qian,
U.S. Geol. Surv. Open-File Rep. 94-684, 1 (1994).
28. Discussions with S. Huang, A. T. Anderson Jr., F. M. Richter,
M.Wadhwa,P.B.Tomascak,R.J.Walker,andA.Pourmand
are appreciated. We thank three anonymous reviewers for
constructive comments. This work was supported by a
Packard fellowship, the France Chicago Center, and NASA
through grant NNG06GG75G to N.D.
Supporting Online Material
www.sciencemag.org/cgi/content/full/320/5883/1620/DC1
SOM Text S1 to S5
Fig. S1
Tables S1 to S4
References
29 February 2008; accepted 12 May 2008
10.1126/science.1157166
Natural Variability of Greenland Climate,
Vegetation, and Ice Volume During
the Past Million Years
Anne de Vernal* and Claude Hillaire-Marcel
The response of the Greenland ice sheet to global warming is a source of concern notably because of its
potential contribution to changes in the sea level. We demonstrated the natural vulnerability of the ice
sheet by using pollen records from marine sediment off southwest Greenland that indicate important
changes of the vegetation in Greenland over the past million years. The vegetation that developed over
southern Greenland during the last interglacial period is consistent with model experiments, suggesting a
reduced volume of the Greenland ice sheet. Abundant spruce pollen indicates that boreal coniferous forest
developed some 400,000 years ago during the warm interval of marine isotope stage 11, providing a
time frame for the development and decline of boreal ecosystems over a nearly ice-free Greenland.
T
he potential for sea-level rise, caused by
melting of the Greenland ice-sheet as sur-
face air temperature increases, is consid-
erable (1). Although there is evidence that the
velocity of ice streams flowing into the ocean and
therateofthinningoftheicehaveincreasedre-
cently (2, 3), large uncertainties remain about the
long-term stability of the ice sheet. The climate
Fig. 4. Modeling of Fe
isotopic variations dur-
ing magmatic differen-
tiation in Kilauea Iki
lava lake (12). Solid
lines represent calcu-
lated Fe isotopic com-
positions of residual
melts during fractional
crystallization by assum-
ing a Rayleigh distilla-
tion process with average
crystal-melt fractionation
factors (Dd
56
Fe
crystal-melt
=
d
56
Fe
crystal
d
56
Fe
melt
)of
0.1, 0.2, and 0.3.
Dashed horizontal lines
represent calculated mix-
ing lines between the
most magnesian melt
from the 1959 eruption
(23)andthemostmag-
nesianolivines[(MgO=46.6±1wt%andd
56
Fe = 0, 0.1, and 0.2 (black squares)]. The blue star
represents the most magnesian melt (MgO = 10.7 wt %; assumed d
56
Fe = 0.11). The green bars
represent the ranges of measured d
56
Fe and estimated MgO in olivine grains from two drill core samples
(MgO = 33.6 to 39.8 wt % and 41.9 to 42.7 wt %; table S3). Sample crystallization sequences are the same
as those in Fig. 2. Error bars indicate 95% CI of the mean.
Melt + olivines
01020304050
–0.4
–0.2
0.0
0.2
0.4
MgO (wt%)
Fractional
crystallization
–0.2
–0.3
–0.1
δ
56
Fe = –0.41 to + 0.01
KI75-1-139.3
KI81-5-254.5
δ
56
Fe = –1.10 to + 0.09
δ
56
Fe (‰)
20 JUNE 2008 VOL 320 SCIENCE www.sciencemag.org1622
REPORTS
on June 20, 2008 www.sciencemag.orgDownloaded from
and ice volume of Greenland seem to have varied
considerably in the recent geological past, as shown
by paleoecological data indicating a warmer re-
gional climate and reduced ice volume during the
last interglacial period (4) and by biogenic remains
of coniferous trees from forests that grew on Green-
land during Pliocene and early-to-mid-Pleistocene
times some hundred thousands to million years ago
(5, 6). However, although the climate and ice sheet
history of Greenland during the last climatic cycle
are well documented by isotope and geochemical
records from ice cores, which reveal high sensitiv-
ity to sea-surface conditions over the northern
North Atlantic Ocean (7), very little is known
about conditions preceding the onset of the last
glaciation because of the lack of continuous direct
records. On one hand, glacial activity on Green-
land over millions of years is evidenced by ice-
rafted debris in marine cores from continental
margins (8), but the precise size of the Greenland
ice sheet and its relative stability over time remain
unknown. On the other hand, sedimentary out-
crops from the Greenland coasts and near-shore
marine sediment cores suggest the recurrence of
relatively warm climatic conditions during the past
(5, 6, 9), but the duration and timing of these
phases remain uncertain. We used the pollen con-
tent of sediment cores from the Ocean Drilling
Program (ODP) site 646 on the continental rise,
off southern Greenland (Figs. 1 and 2), as an in-
dependent proxy for assessing the dominant type
of vegetation and the timing of the last forested
episodes. The stratigraphy of the cores was estab-
lished from d
18
O in foraminifer shells (10), which
permits correlation with the stack marine isotope
stratigraphy of Lisiecki and Raymo (11)andthe
setting of a time scale (12) (fig. S1).
One difficulty in interpreting pollen assem-
blages from marine sediments is the identification
ofthevegetationsourceareabecausethepollenis
necessarily exotic and derives from more or less
long-distance transport. T wo main transport mech-
anisms have to be taken into account: atmospheric
transport by winds, and hydrodynamic transport
through runof f, rivers, and marine currents. The
long-distan ce atmospher ic tran sport of pollen re-
sults in low concentrations with distorted assem-
blages characterized by an overrepresentation of
Pinus pollen grains that show exceptional aerial
dispersion properties (13). Along continental mar -
gins, detailed studies have shown that most of the
pollen in marine sediments is due to fluvial inputs
from adjacent lands, therefore allowing direct com-
parison with terrestrial palynostratigraphy (14). In
the Labrador Sea, pollen analyses along a near-
shore to offshore transect showed that atmospheric
transport is accompanied with an asymptotic de-
crease in the concentration of pollen from the coast-
line and an increase in the relative proportion of
1
GEOTOP Geochemistry and Geodynamics Research Center
Université du Québec à Montal, Case Postale 8888,
succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada.
*To whom correspondence should be addressed. E-mail:
devernal.anne@uqam.ca
Fig. 1. Location of ODP
site 646 (58°12.56 N,
48°22.15 W; water
depth 3460 m) in the
northern North Atlantic
and of other coring sites
referred to in the text:
HU-90-013-013 (58°12.59
N, 48°22.40 W; water
depth 3379 m); ODP
site 647 (53.19.9 N,
45°14.7 W, water depth
3862 m); and HU-84-
030-003 (53.19.8 N,
45°14.7 W, water depth
3771 m). The Dye 3 cor-
ing site, where spruce
DNA was found, is indi-
cated by a blue square
(6). The white arrows
correspond to the mean
surface vector wind from
June to September based
on the 1968-to-1996 clima-
tology [see the National
Centers for Environmen-
tal Prediction/National
Center for Atmospheric
Research reanalysis (www.
cdc.noaa.gov/cgi-bin/Composites/comp.p/)], available from the Earth System Research Laboratory, Physical
Science Division, of the National Oceanic and Atmospheric Administration (www.esrl.noaa.gov/psd/). The thin
andthickwhitearrowscorrespondtowindspeedslowerandhigherthan2ms
1
, respectively. The blue
arrows schematically illustrate the surface ocean circulation pattern along the Greenland coast, in the
Labrador Sea, and in Baffin Bay. The dashed green line corresponds to the present-day northern limit of the
potential natural tree line or cold evergreen needle-leaf forest in Biome models (27).
Fig. 2. Stratigraphy and chronology of the upper 76 m at ODP site 646 (58°12.56N, 48°22.15 W; water
depth 3460 m) based on
18
OmeasurementsinNeogloboquadrina pachyderma (10) and correlation with the
stack curve LR04 of Lisiecki and Raymo (11). The abundance of pollen grains and spores of pteridophytes is
expressed in concentration per cm
3
of sediments. Sedimentation rates are uniform and average 7.8 cm per ka,
which permits the assumption that pollen concentrations are approximately proportional to fluxes (fig. S1)
(12). The vertical gray bands correspond to modern values of concentrations, and the horizontal green bands
correspond to phases with concentrations at least twice that of those recorded during the late Holocene.
www.sciencemag.org SCIENCE VOL 320 20 JUNE 2008
1623
REPORTS
on June 20, 2008 www.sciencemag.orgDownloaded from
Pinus (15). Pliocene to recent pollen contents at
offshore sites from the northwest North Atlantic
(ODP site 647, core sample HU84-030-003) (Fig.
1), where mostly wind inputs can be recorded, are
characterized by pollen fluxes lower than 0.5 grain
cm
2
year
1
and largely dominated by Pinus (16).
The analyses of Arctic snow, Greenland ice, and
pollen traps along the southern Greenland edge
show an exotic component from boreal forests of
North America, but illustrate that long-distance
atmospheric transport is responsible for low inputs
(17, 18). Therefore, the large-amplitude variations
in pollen content from the southern Greenland
margin records at ODP site 646, with fluxes
well above modern or Holocene (that is, the past
1 1, 500 years) values, can be interpreted as reflecting
changes in hydrodynamic inputs from a relatively
proximal source-vegeta tion located on southern
Greenland (12). Furthe r evidence for the promi-
nence of proximal sources during interglacials is
provided by the comparison of total pollen content
to long-distance transported grains of Pinus (12).
The pollen record of the last million years at
ODP site 646 shows important variations both in
concentrations [thus fluxes, because sedimentation
rates remained fairly constant in the study se-
quence (12)] and dominance of the main taxa
(Figs.2and3andfigs.S2andS3)(12). Pollen
concentrations vary by orders of magnitude, from
less than 10 grains cm
3
to more tha n 10
3
grains
cm
3
. In general, low concentrations are recorded
during glacial stages. Minimum values (close to
zero) characterize the marine isotope stage (MIS)
6, indicating very low fluxes from both long-
distance and proximal sources, which is consistent
with extensive development of the Laur entide and
Greenland ice sheets (9). Higher concentrations
are seen in interglacial sediments. The Holocene
is characterized by concentrations of about 100
grains cm
3
. The assemblages include inputs from
the boreal forest of southeastern Canada linked to
predominant southwest-northeast summer winds,
but show components (12) that are from more-
proximal shrub-tundra vegetation.
Earlier interglacial stages record much higher
pollen concentrations than the Holocene. Those of
MIS 5e are five times higher, and the concen-
trations of pteridophytes spores are also higher .
The assemblages are characterized by dominant
Alnus and abundant spores of Osmunda (Fig. 3B
and fig. S2). In core sample HU-90-013-013 col-
lected near ODP site 646 (19), more detailed anal-
yses of MIS 5e document the pollen succession
(Fig. 4). A rapid increase of Alnus occurred during
an early phase of MIS 5e characterized by high
summer sea-surface temperatures, which suggests
rapid development of shrub tundra after the ice
retreat (9). The subsequent increase of Osmunda
represents a unique event in the last million years.
It coincides with maximum sea-surface temper-
atures in winter and suggests the development of
dense fern vegetation over southern Greenland un-
der climatic conditions not unlike those of the
modern boreal forest, given the present distri-
bution of the genus. Osmunda expanded possibly
in a la r g e geog r ap h i c a l do m a in, because spores
were identified at the base of ice cores drilled in
the Agassiz ice cap (20). Toward t h e end of MIS
5e, pollen and spore influxes decreased concomi-
tantly with the augmentation of herb percentages.
This event corresponds to the fi r st ste p to w a r d
higher d
18
OvaluesinGlobigerina bulloides and
Neogloboquadrina pachyderma. It suggests a
change to the herb tundra resulting from regional
cooling at the onset of ice growth.
MIS 7, the penultimate interglacial period, dif-
fered from MIS 5e in many respects (Fig. 3C).
Sea-surface temperatures never reached those of
MIS 5e, and the pollen and spore content of sed-
iment remained lower . Its pollen assemblages are
characterized by dominant herb taxa (notably
Poaceae and Cyperaceae), suggesting the devel-
opment of tundra along southern Greenland coasts.
The MIS 1 1 interglacial is different than others
because of its near 50,000-year duration [374 to
424 thousand years ago (ka) (11)]. At site 646,
MIS 11 is also unique because of pollen concen-
trations one order of magnitude higher than those
of the Holocene, the dominance of Picea spp., and
the occurrence of Abies pollen grains (Figs. 2 and
3D and fig. S2). The dominance of Picea from the
beginning to the end of the interglacial period sug-
gests the presence of forest vegetation throughout
the entire interval, at least over southern Greenland.
The base of MIS 1 1 is marked by higher pro-
Fig. 3. (A to E)Stratig-
raphy, sea-surface temper-
atures, and concentration
of dominant pollen and
spore taxa during the
present interglacial pe-
riod [MIS 1 (A)], the last
interglacial period [MIS
5e (B)], MIS 7 (C), MIS
11 (D), and MIS 13 (E).
Sea-surface temperatures
are estimated from dino-
cysts [the thin lines are
best estimates from five
modern analogs and the
thick lines correspond to
three-point running av-
erag e s (28)]. Dinocyst as-
semblages were reported
by de Vernal and Mudie
(29). The modern sea-
surface temperatures at
ODPsite646are3.
0.7°C and 7.3 ± 1.1°C
in winter and summer, re-
spectively [data from the
World Ocean Atlas, 2001
(30)]. Among pollen assem-
blages, herb taxa include
mostly Pocacea, Cyperace-
ae, and Asteraceae. Shrub
pollen is dominated by
Alnus and Betula with the
occasional occurrence of
Salix and Ericaceae (fig. S2).
Pinus has been excluded
because of its overrepresen-
tation due to long-distance
atmospheric transport.
20 JUNE 2008 VOL 320 SCIENCE www.sciencemag.org1624
REPORTS
on June 20, 2008 www.sciencemag.orgDownloaded from
portions of shrub and herb pollen, indicating more
open vegetation and a cooler climate, but Picea
was probably already present regionally , taking
into account the fact that its concentrations reached
hundreds of grains per cm
3
. The covariance of d
18
O
in planktic foraminifers and of Picea concentra-
tio ns suggests a synchronous ice retreat and early
forest development, a maximum of Picea concen-
tration when maximum sea-surface temperatures
occurred, and a concomitant glacial onset and
forest decline at the end of MIS 11. The devel-
opment of spruce forest over Greenland probably
indicates relatively mild conditions (6)anda
substantial reduction of the Greenland ice sheet
during the long MIS 11 interglacial period. How-
ever , precise paleoclimatic and paleoecological in-
ferences from pollen or DNA are uncertain without
knowing the species of conifer trees. The identifi-
cation of Picea pollen grains down to the species
level is difficult because of uniform morphologica l
characteristics of the genus. Nevertheless, detailed
microscopic examination suggests the occurrence
of several species, among which Picea abies
dominated (fig. S4). In northern Europe and
Fennoscandia, Picea abies is a common conifer
tree of montane and boreal environments that
often occurs at the tree limit and acted as a pi-
oneer along emerging postglacial coasts (21).
Growth of Picea abies is fostered by high July
temperatures and cool and snowy winters, but
has a low temperature threshold (2.6°C) for the
initiation of bud and stem growth. Picea abies
has adapted to survive severe climate; it can
persist for hundreds of years by vegetative prop-
agation. Therefore, its development, at least over
southern Greenland during MIS 11, does not nec-
essarily imply a zonal climate that was warmer
than at present, because the northern tree limit
and the Picea abies timberline occur now near
the polar circle in Europe. However, it certainly
indicates ice-free conditions over a large area of
Greenland, and thus a much-reduced ice-sheet
volume, otherwise katabatic winds (22)would
have restricted any forest development.
Before MIS 11, the pollen content was rarely
less abundant than it was during the Holocene,
thus suggesting vegetation that was generally as
extensive as it is at present. Pollen was particu-
larly abundant during MIS 13 (Figs. 2 and 3E),
but Picea concentrations did not reach values as
high as those during MIS 11, thus suggesting
shrub-tundratype vegetation.
In conclusion, although the pollen record
from site 646 does not provide a direct picture of
climate changes over Greenland, it yields impor-
tant information that helps link fragmentary
terrestrial records into a continuous sequence.
Furthermore, the pollen record is as a proxy for
the ice volume of Greenland in two ways. First, it
provides information on pollen production, and
thus on the vegetation density on adjacent land,
which implies ice-free conditions. Second, it
depends on the distance to site 646 from the
source vegetation, which has been shorter during
ice-free episodes in southern Greenland because
of low relative sea levels that are a result of iso-
static adjustment. A substantially reduced Green-
land ice volume seems to have characterized MIS
5e, 1 1, and 13, as well as the Pliocene (23), indi-
cating a long-term sensitivity of the Greenland
ice sheet to warm temperatures. Among warm
climate intervals of the last million years, MIS 11
stands out in terms of forest vegetation spreading
over southern Greenland. Thus, if the melting of
Greenland and other Arctic ice caps are assumed
to have contributed to the equivalent of a 2.2- to
3.4-m-higher sea level during MIS 5e (24), we
may assume that they contributed some more
during MIS 11. The actual volume of the ice-
sheet decline during these episodes is difficult to
estimate, but it did occur under natural forcing
with an atmospheric partial pressure of CO
2
280
parts per million by volume (25). During MIS 5e,
particularly high summer insolation probably con-
tributed to the Greenland ice melt (4), whereas
the long duration of MIS 1 1 might explain the
retreat of the ice sheet under an insolation pattern
that is similar to that of the Holocene (26). The
data presented here provide evidence of the
vulnerability of the Greenland ice sheet to natural
forcing and should increase concerns about its
fate during the anticipated global warming.
References and Notes
1. J. A. Dowdeswell, Science 311, 963 (2006).
2. E. Rignot, P. Kanagaratnam, Science 311, 986
(2006).
3. S. B. Luthcke et al., Science 314, 1286 (2006).
4. B. L. Otto-Bliesner et al., Science 311, 1751 (2006).
5. O. Bennike et al., Palaeogeogr. Palaeoclimatol.
Palaeoecol. 186, 1 (2002).
6. E. Willerslev et al., Science 317, 111 (2007).
7. K. Andersen et al., Nature 431, 147 (2004).
8. H. C. Larsen et al., Science 264, 952 (1994).
9. S. Funder et al., Quat. Sci. Rev. 17, 77 (1998).
10. A. E. Aksu, C. Hillare-Marcel, P. Mudie, Proceedings of the
Ocean Drilling Program 105B, 689 (1989).
11. L. E. Lisiecki, M. E. Raymo, Paleoceanography 20,
PA1003 10.1029/2004PA001071 (2005).
12. Material and methods are available as supporting
material on Science Online.
13. L. E. Heusser, W. L. Balsam, Quat. Res. 7, 45 (1977).
14. M. F. nchez Goñi, F. Eynaud, J. L. K. Andersen,
N. J. Shackleton, Earth Planet. Sci. Lett. 171, 123 (1999).
15. A. Rochon, A. de Vernal, Can. J. Earth Sci. 31, 15 (1994).
16. C. Hillaire-Marcel, A. de Vernal, ographi e physique et
Quaternaire 43, 263 (1989).
17. J. C. Bourgeois, K. Gajewski, R. M. Koerner, J. Geophys. Res.
106, (D6), 5255 (2001).
18. D. D. Rousseau et al., Rev. Palaeobot. Palynol. 141, 277
(2006).
19. C. Hillaire-Marcel, A. de Vernal, G. Bilodeau, A. J. Weaver,
Nature 410, 1073 (2001).
20. R. M. Koerner, J. Bourgeois, D. Fisher, Ann. Glaciol. 10,
85 (1988).
21. T. Giesecke, K. D. Bennett, J. Biogeogr. 31, 1523 (20 04).
22. A. G. Meesters, N. J. Bink, E. A. C. Henneken, H. F. Vugts, F.
Cannemeijer, Boundary-Layer Meteorol. 85, 475 (1997).
23. A. de Vernal, P. J. Mudie, Proceedings of the Ocean
Drilling Program 105B, 401 (1989).
24. J. T. Overpeck et al., Science 311, 1747 (2006).
25. U. Siegenthaler et al., Science 310, 1313 (2005).
26. A. Berger, M.-F. Loutre, Science 297, 1287 (2002).
27. Kaplan, J.O. et al., Journal of Geophysical Research 108
D19, 8171, doi:10.1029/2002JD002559 (2003).
28. A. de Vernal et al., Quat. Sci. Rev. 24, 897 (2005).
29. A. de Vernal, P. J. Mudie, in Neogene and Quaternary
Dinoflagellate Cysts and Acritarchs, M. J. Head, J. H. Wrenn,
Eds. (American Association of Stratigraphic Palynologists
Foundation, College Station, TX, 1992), p. 329.
30. National Oceanographic Data Center, World Ocean
Database 2001, Scientific Data Sets, Observed and Standard
Level Oceanographic Data (CD-ROM) (National Oceanic and
Atmospheric Administration, Silver Spring, MD, 2001).
31. This study is a contribution of the Polar Climate Stability
Network supported by the Canadian Foundation of
Climate and Atmospheric Science. We also acknowledge
financial support from the Natural Sciences and
Engineering Resear ch Council of Canada and the Fonds
Quécois de Recherche sur les Sciences de la Nature et
les Technologies.
Supporting Online Material
www.sciencemag.org/cgi/content/full/320/5883/1622/DC1
Materials and Methods
Figs. S1 to S4
References
10 December 2007; accepted 9 May 2008
10.1126/science.1153929
Fig. 4. Close-up on the stratigraphy of the last
interglacial period (MIS 5e) from core sample HU-90-
013-013, collected near ODP site 646. Shown are the
isotope stratigraphy based on Globigerina bulloides
and Neogloboquadrina pachyderma (19), the sea-
surface temperatures estimated from dinocysts (28),
and the concentration and percentages of the
dominant pollen and spore taxa. The percentages
of Osmunda were calculated from the pollen sum,
excluding spores.
www.sciencemag.org SCIENCE VOL 320 20 JUNE 2008 1625
REPORTS
on June 20, 2008 www.sciencemag.orgDownloaded from
... paradox". It has been suggested that the duration and magnitude of MIS 11c warmth, particularly in the North Atlantic 16,17 , may have driven extensive Greenland ice sheet mass loss 18,19 , contributing to sealevel rise up to 6-13 m above the present level [11][12][13] . MIS 11c encompasses two boreal summer insolation peaks 14 . ...
... During autumn, the influence of Mediterranean-sourced moisture and local recycling processes on precipitation amount in the western Mediterranean increases, as the large thermal gradient between warm Mediterranean SST and cold air enhances evaporation and baroclinic instability 93 . Occasional summer thunderstorms or cyclogenesis originating in the Atlantic or the Gulf of Genoa may potentially result in extremely 18 O-depleted rainfall due to intense Rayleigh fractionation. However, the impact of these events on long-term timescales cannot (yet) be distinguished unequivocally 93,100 . ...
Article
Full-text available
The Marine Isotope Stage (MIS) 11c interglacial and its preceding glacial termination represent an enigmatically intense climate response to relatively weak insolation forcing. So far, a lack of radiometric age control has confounded a detailed assessment of the insolation-climate relationship during this period. Here, we present ²³⁰Th-dated speleothem proxy data from northern Italy and compare them with palaeoclimate records from the North Atlantic region. We find that interglacial conditions started in subtropical to middle latitudes at 423.1 ± 1.3 thousand years (kyr) before present, during a first weak insolation maximum, whereas northern high latitudes remained glaciated (sea level ~ 40 m below present). Some 14.5 ± 2.8 kyr after this early subtropical onset, peak interglacial conditions were reached globally, with sea level 6–13 m above present, despite weak insolation forcing. We attribute this remarkably intense climate response to an exceptionally long (~15 kyr) episode of intense poleward heat flux transport prior to the MIS 11c optimum.
... However, modeling experiments suggest that the relative importance of deep-water formation in polar regions may increase under extreme scenarios of anthropogenic warming Lique & Thomas, 2018). MIS 11 is considered to be a potential analog for Earth's contemporary climate system, due to its similarities in orbital geometry (Berger & Loutre, 2002;Loutre & Berger, 2003), preindustrial atmospheric greenhouse gas chemistry (Raynaud et al., 2005;Siegenthaler et al., 2005) and substantial reduction in Greenland Ice Sheet volume (e.g., de Vernal & Hillaire-Marcel, 2008;Reyes et al., 2014). For this reason, understanding the evolution of the different overturning branches during MIS 11 could offer a unique insight into the long-term fate of the contemporary AMOC and its implications for global climate. ...
Article
Full-text available
In this multiproxy study, we used new isotopic data on planktonic foraminifera to highlight the strong instability that characterized surface conditions in the Iceland Basin during Marine Isotope Stage 11 (MIS 11). We produced new oxygen isotope data on the planktonic species Neogloboquadrina incompta and Turborotalita quinqueloba, foraminifera‐bound nitrogen isotope data on N. incompta, and calcareous nannofossil data at coring site IODP Site U1314. The multiproxy record displays two distinct upper ocean regimes: a relatively stable pre‐climate optimum and an unstable post‐climate optimum with high amplitude variations in nutrient utilization and seasonality proxies, and strong enrichment in oxygen isotopes suggesting colder and/or saltier upper waters. The latter regime was concomitant with a resurgence in ice‐rafted debris. Interestingly, this surface instability is not observed in cores from sites affected by the North Atlantic Current. Moreover, deep water ventilation is reconstructed to decrease throughout the eastern North Atlantic, while remaining rather constant in the Labrador Sea. The evidence presented here indicates that deep‐water formation was unstable throughout MIS 11, and that peak periods of deep‐water formation varied across high latitude North Atlantic basins, depending on the prevailing surface conditions in each region. These findings suggest that reconstructing deep‐water formation and ventilation require a comprehensive approach that accounts for the interconnectivity between different components of the overturning circulation system.
... Sea level records from the LIG indicate that global mean sea level was 4-9 m higher than present, peaking sometime after ∼ 125 ka (Dutton et al., 2015). Geologic records indicate a smaller but intact Greenland ice sheet (Colville et al., 2011;de Vernal and Hillaire-Marcel, 2008). While some studies suggest that Greenland may have contributed as much as 5 m (e.g., Yau et al., 2016), most recent studies have indicated that less than 2 m is more probable, requiring large contributions from the Antarctic ice sheet (AIS), even for low-end estimates of global sea level rise (Dutton et al., 2015). ...
Article
Full-text available
We examine results from two transient modeling experiments that simulate the Last Interglacial period (LIG) using the state-of-the-art Community Earth System Model (CESM2), with a focus on climate and ocean changes relevant to the possible collapse of the Antarctic ice sheet. The experiments simulate the early millennia of the LIG warm period using orbital forcing, greenhouse gas concentrations, and vegetation appropriate for 127 ka. In the first case (127ka), no other changes are made; in the second case (127kaFW), we include a 0.2 Sv freshwater forcing in the North Atlantic. Both are compared with a pre-industrial control simulation (piControl). In the 127ka simulation, the global average temperature is only marginally warmer (0.004 °C) than in the piControl. When freshwater forcing is added (127kaFW), there is surface cooling in the Northern Hemisphere (NH) and warming in the Southern Hemisphere (SH), consistent with the bipolar seesaw effect. Near the Antarctic ice sheet, the 127ka simulation generates notable ocean warming (up to 0.4 °C) at depths below 200 m compared to the piControl. In contrast, the addition of freshwater in the North Atlantic in the 127kaFW run results in a multi-century subsurface ocean cooling that rebounds slowly over multiple millennia near the Antarctic ice sheet. These results have implications for the thermal forcing (and thereby mass balance) of the Antarctic ice sheet. We explore the physical processes that lead to this result and discuss implications for climate forcing of Antarctic ice sheet mass loss during the LIG.
... Other proxies are affected by their own set of limitations in high-latitude oceans, for example, dinoflagellate cyst assemblages at high latitudes are controlled by multiple variables, and it is often difficult to ascertain which is responsible for the observed assemblage change 17 . In addition, standard geochemical proxies such as oxygen isotopes (δ 18 O), Mg/Ca-thermometry and Alkenone-based SST reconstructions cannot accurately constrain cold temperatures < 4°C because secondary controls besides temperature influence all these proxies at low temperatures [18][19][20] . ...
Article
Full-text available
Most climate proxies of sea surface temperatures suffer from severe limitations when applied to cold temperatures that characterize Arctic environments. These limitations prevent us from constraining uncertainties for some of the most sensitive climate tipping points that can trigger rapid and dramatic global climate change such as Arctic/Polar Amplification, the disruption of the Atlantic Meridional Overturning Circulation, sea ice loss, and permafrost melting. Here, we present an approach to reconstructing sea surface temperatures globally using paired Mg/Ca - δ¹⁸Oc recorded in tests of the polar to subpolar planktonic foraminifera Neogloboquadrina pachyderma. We show that the fidelity of Mg/Ca-based paleoclimate reconstructions is compromised by variations in seawater carbonate chemistry which can be successfully quantified and isolated from paleotemperature reconstructions using a multiproxy approach. By applying the calibration to the last glacial maximum, we show that marine polar amplification has been underestimated by up to 3.0 ± 1.0 °C in model-based estimates.
... Thus, the information needed to reconstruct the size of the GrIS over time is lacking. Analysis of marine sediment reveals the distribution of terrestrial ecosystems during interglacials, but it cannot provide high spatial resolution (3). In contrast, materials collected from below the GrIS record location-specific ice extent and climate, providing direct evidence for past ice sheet absence and biosphere response. ...
Article
Full-text available
The persistence and size of the Greenland Ice Sheet (GrIS) through the Pleistocene is uncertain. This is important because reconstructing changes in the GrIS determines its contribution to sea level rise during prior warm climate periods and informs future projections. To understand better the history of Greenland’s ice, we analyzed glacial till collected in 1993 from below 3 km of ice at Summit, Greenland. The till contains plant fragments, wood, insect parts, fungi, and cosmogenic nuclides showing that the bed of the GrIS at Summit is a long-lived, stable land surface preserving a record of deposition, exposure, and interglacial ecosystems. Knowing that central Greenland was tundra-covered during the Pleistocene informs the understanding of Arctic biosphere response to deglaciation.
Article
Full-text available
Paleoclimate information has played an instrumental role in showing how fast climate can vary and how large these changes can be. It provided the first vivid demonstration of the relationships between atmospheric greenhouse gas concentrations and surface air temperatures, as well as striking representations of climate change impacts and possible feedbacks within the climate system, such as those associated with vegetation or ice sheet changes. Here, a short review of recent advances in paleoclimate studies is provided, with the objective of showing what this information on past climates and environments can bring to research on current and possible future climates. We advocate that (1) paleoclimatic and paleoenvironmental information can be leveraged for narratives about climate change, in particular at the local and regional levels, (2) paleoclimate data is essential for out-of-range tests of climate models, since future climates are also out of the range of recent climate information used for calibrating climate models, (3) paleoclimate data, in particular for the last millennia, is essential for taking multi-centennial and multi-millennial variability into account when describing trends related to anthropogenic forcings and attributing climate change signals, in particular for extreme and rare events, and (4) paleoclimates also provide extremely valuable information for initializing the slow components of climate models. In addition, we show how paleoclimate studies can be beneficial to put recent and future climate change into context and improve our knowledge on key processes. They can both benefit from and contribute to models and knowledge based on the study of recent and future climates.
Preprint
Full-text available
Marine Isotope Stage (MIS) 11 has long been considered a unique Quaternary interglacial due to its orbital similarities with the Holocene, persistence of high atmospheric CO₂ concentrations and extended duration triggering unusual polar ice-sheet loss. Despite its importance, Indian summer monsoon (ISM) variability within the core monsoon zone (CMZ), as well as its impacts on vulnerable tropical forests, remain unexplored. Here, we document, for the first time, MIS 11 ISM-driven vegetation changes and their underlying forcings by combining pollen analysis from IODP Site U1446, strategically retrieved from the Bay of Bengal to represent the CMZ, with model simulations. Our results reveal the distinct roles of insolation, CO₂, ice volume, and millennial-scale variability in driving coupled ISM-vegetation changes, depending on the changing boundary conditions through MIS 11. Orbital- and millennial-scale tropical forest changes mirror southern European vegetation and atmospheric methane variability, ultimately reflecting shifts in the Intertropical Convergence Zone (ITCZ) that impact the tropical regions, a primary source of CH₄ emissions. Our proxy and model reconstructions show that ISM-vegetation changes during MIS 11c closely followed boreal summer insolation, revealing its dominant role under warm background conditions with high CO₂ and reduced ice volume. Conversely, during MIS 11b-a, ISM-vegetation decreased while insolation remained high, indicating that its influence was overshadowed by expanding ice sheets, lower CO₂, and the interaction of orbital and millennial-scale variations. Millennial-scale climate variability during the younger MIS 11b-a substages is expressed by prominent forest contractions tied to southward ITCZ shifts, Atlantic meridional overturning circulation (AMOC) reductions and high-latitude ice sheet dynamics, which were rapidly followed by abrupt forest expansions associated with northward ITCZ shifts, AMOC strengthening and CH₄ overshoots. Conspicuously, the first and most severe forest setback interrupted MIS 11 full interglacial conditions, suggesting that extreme ISM weakening could also occur under similarly warm future conditions. Our findings provide new insights into ISM behavior during MIS 11, highlighting its high sensitivity to climate changes in the context of projected ISM intensification and its effect on the extent and composition of the tropical forest, which is key component of both global carbon and methane cycles.
Preprint
Full-text available
Climatic and environmental changes during past interglacial periods can be investigated to improve our understanding of mechanisms governing the changes which are currently observed. Numerous proxies might be utilised to reconstruct various environmental parameters. For instance, pollen analysis indicates changes in vegetation as well as winter temperature fluctuations, while Chironomidae larvae head capsules are widely used to recreate summer thermal conditions. Non-biting midges remains indicate trophy and pH of water bodies as well. Nevertheless, they have been used mostly in the studies of the Holocene with hardly any Chironomid-inferred temperature reconstructions conducted for MIS 11 period. In this study we present the first quantitative summer temperature reconstruction for the post-Holsteinian (Marine Isotope Stage – MIS 11b) in Central Europe based on the analysis of fossil chironomid remains preserved in palaeolake sediments recovered at Krępa, southeastern Poland. The stratigraphic context for the chironomid-based summer temperature reconstruction is provided by pollen data, together allowing to compare our results in the context of climate development at the end of the Holsteinian Interglacial. Chironomidae assemblages at the Krępa site consist mainly of oligotrophic and mesotrophic species (e.g Corynocera ambigua-type, Chironomus anthracinus-type) with lower abundance of eutrophic species (e.g. Chironomus plumosus-type). The chironomid-based summer temperature reconstruction indicates July temperature ranging between 15,3 ॰C and 20,1 ॰C during the early post-Holsteinian. Temperature changes during the first stadial after the Holstein Interglacial period are also reflected by the pollen data, which, however, show a certain delay compared to the chironomids. In any case, results from Krępa prove that conducting Chironomidae analysis is even feasible for periods as early as the mid-Pleistocene, enhancing our understanding of the mechanisms that control present-day climatic and environmental changes. The additional element of this research is indicating sites within the Polish borders that were investigated so far – mostly on the basis of pollen analysis, occasionally Cladocera, isotopes, etc. – and might be new objects of studies based on Chironomid-inferred temperature reconstructions. However, bringing Chironomid analysis with particular emphasis of challenges of conducting it with the use of sediments older than Holocene is the primary aim of this publication. Data from the MIS 11 complex are unique. There are only 4 sites with pre-Late Glacial chironomid-based summer temperature reconstructions in Europe.
Article
Full-text available
The microfossil record contains abundant, diverse, and well‐preserved fossils spanning multiple trophic levels from primary producers to apex predators. In addition, microfossils often constitute and are preserved in high abundances alongside continuous high‐resolution geochemical proxy records. These characteristics mean that microfossils can provide valuable context for understanding the modern climate and biodiversity crises by allowing for the interrogation of spatiotemporal scales well beyond what is available in neo‐ecological research. Here, we formalize a research framework of “micropaleoecology,” which builds on a holistic understanding of global change from the environment to ecosystem level. Location: Global. Time period: Neoproterozoic‐Phanerozoic. Taxa studied: Fossilizing organisms/molecules. Our framework seeks to integrate geochemical proxy records with microfossil records and metrics, and draws on mechanistic models and systems‐level statistical analyses to integrate disparate records. Using multiple proxies and mechanistic mathematical frameworks extends analysis beyond traditional correlation‐based studies of paleoecological associations and builds a greater understanding of past ecosystem dynamics. The goal of micropaleoecology is to investigate how environmental changes impact the component and emergent properties of ecosystems through the integration of multi‐trophic level body fossil records (primarily using microfossils, and incorporating additional macrofossil data where possible) with contemporaneous environmental (biogeochemical, geochemical, and sedimentological) records. Micropaleoecology, with its focus on integrating ecological metrics within the context of paleontological records, facilitates a deeper understanding of the response of ecosystems across time and space to better prepare for a future Earth under threat from anthropogenic climate change.
Preprint
Full-text available
We used mapping of bedrock lithology, bedrock fractures, and lake density in Inglefield Land, northwest Greenland, combined with cosmogenic nuclide (10Be and 26Al) measurements in bedrock surfaces, to investigate glacial erosion and the ice-sheet history of the northwestern Greenland Ice Sheet. The pattern of eroded versus weathered bedrock surfaces and other glacial erosion indicators reveal temporally and spatially varying erosion under cold- and warm-based ice. All of the bedrock surfaces that we measured in Inglefield Land contain cosmogenic nuclide inheritance with apparent 10Be ages ranging from 24.9 ± 0.5 to 215.8 ± 7.4 ka. The 26Al/10Be ratios require minimum surface histories of ~150 to 2000 kyr. Because our sample sites span a relatively small area that experienced a similar ice-sheet history, we attribute differences in nuclide concentrations and ratios to varying erosion during the Quaternary. We show that an ice sheet history with ~900 kyr of exposure and ~1800 kyr of ice cover throughout the Quaternary is consistent with the measured nuclide concentrations in most samples when sample-specific subaerial erosion rates are between 0 and 2 x 10-2 mm yr-1 and subglacial erosion rates are between 0 and 2 x 10-3 mm yr-1. These erosion rates help to characterize arctic landscape evolution in crystalline bedrock terrains in areas away from focused ice flow.
Article
Full-text available
Previous pollen analyses of ice cores from Devon and Ellesmere islands have contributed considerably to our knowledge of past climate in the Canadian High Arctic. In this case, in 1979, bulk (35–83 litres) water samples were melted down a hole 139 m deep, drilled to bedrock, 1.2 km from the top of the flow line in Agassiz Ice Cap in northern Ellesmere Island. Analysis of ten of these samples, plus some taken in very dirty ice from the melt tank during drilling 7 years ago, has yielded pollen concentrations that, together with the oygen-isotope (6) signatures, suggest the Agassiz Ice Cap began its growth during the last interglacial period. A discrepancy between melt-tank and bulk-sample pollen concentrations is believed to be due to a loss of pollen from the melt-tank samples during the drilling process.
Article
Full-text available
Correlations of isotopic and palynological records from deep sea cores in Baffin Bay and Labrador Sea with terrestrial palynological sequences, supported by a few Th/U chronological controls, allow the establishment of a regional climatostratigraphic scheme for the Late Pleistocene climatic fluctuations in eastern Canada. During the climatic optimum of isotopic substage 5e, warmer conditions than present prevailed both on land and in oceanic surface water masses. The 5e/5d transition is marked by an abrupt shift in 818O values in Baffin Bay and Labrador Sea as a consequence of ice growth over circumpolar areas of northeastern Canada. From substage 5d to substage 5a, the Baffin Bay border lands experienced glacial conditions while subarctic to cool-temperate and humid climates persisted over Labrador Sea and Atlantic Canada. A short (<104yrs) stage 4 is recorded in deep sea cores with high 8'8O values. It corresponds to the Early Wisconsinan southward extension of the Laurentide Ice Sheet dated at ca. 80,000 yrs in the central St. Lawrence Lowland. There is no clear evidence of full glacial conditions in the Atlantic Provinces during this episode. Stage 3 (Middle Wisconsinan) corresponds in the isotopic records to large oscillations in 818O values suggesting meltwater transits in both Baffin Bay and Labrador Sea. The ice cover remained relatively extensive over eastern Canada, although some areas experienced ice-marginal conditions : in the Atlantic Provinces, notably on Cape Breton Island, hemiarctic to subarctic climate is inferred from palynological records; in the Appalachian foothills of Quebec glacial Lake Gayhurst developed some 46,000 yrs ago. During isotopic stage 2 (Late Wisconsinan), the Laurentide Ice Sheet reached its maximum extent while satellitic ice-caps developed over the Atlantic Provinces. In deep sea cores, high 818O values mark the full glacial conditions of isotopic stage 2, although slightly lower values in western Labrador Sea indicate discrete but continuous meltwater influxes. An early melting phase of the northeastern margin of the Laurentide Ice Sheet is recorded shortly after 16,700BP. The full ice-retreat is observed after ca. 11,000BP. At that time, southeastern Canada was already largely ice-free. Finally, the optimum climatic conditions of isotopic stage 1 settled diachronously in the adjacent basins of eastern Canada.
Article
Full-text available
Glacial till, glaciomarine diamictites, and ice-rafted detritus found in marine cores collected off the shore of southeast Greenland record multiple Late Cenozoic glaciations beginning in the Late Miocene. Distinct rock assemblages and seismic stratigraphic control correlate the diamictites with glaciation of the southeast Greenland margin. Glaciers advanced to the sea during several intervals in the Pliocene and Pleistocene. North Atlantic glaciation may have nucleated in southern Greenland rather than further north because of the high mountains and the high levels of precipitation in this region.
Article
Full-text available
We present a 5.3-Myr stack (the "LR04" stack) of benthic δ 18 O records from 57 globally distributed sites aligned by an automated graphic correlation algorithm. This is the first benthic δ 18 O stack comprised of more than three records to extend beyond 850 ka, and we use its improved signal quality to identify 24 new marine isotope stages in the early Pliocene. We also present a new LR04 age model for the Plio-Pleistocene derived from tuning the δ 18 O stack to a simple ice model based on June 21 insolation at 65 • N. Stacked sedimentation rates provide additional age model constraints to prevent overtuning. Despite a conservative tuning strategy, the LR04 benthic stack exhibits significant coherency with insolation in the obliquity band throughout the entire 5.3 Myr and in the precession band for more than half of the record. The LR04 stack contains significantly more variance in benthic δ 18 O than previously published stacks of the late Pleistocene as the result of higher resolution records, a better alignment technique, and a greater percentage of records from the Atlantic. Finally, the relative phases of the stack's 41-and 23-kyr components suggest that the precession component of δ 18 O from 2.7–1.6 Ma is primarily a deep-water temperature signal and that the phase of δ 18 O precession response changed suddenly at 1.6 Ma.
Article
Full-text available
Previous pollen analyses of ice cores from Devon and Ellesmere islands have contributed considerably to our knowledge of past climate in the Canadian High Arctic. In this case, in 1979, bulk (35–83 litres) water samples were melted down a hole 139 m deep, drilled to bedrock, 1.2 km from the top of the flow line in Agassiz Ice Cap in northern Ellesmere Island. Analysis of ten of these samples, plus some taken in very dirty ice from the melt tank during drilling 7 years ago, has yielded pollen concentrations that, together with the oygen-isotope (6) signatures, suggest the Agassiz Ice Cap began its growth during the last interglacial period. A discrepancy between melt-tank and bulk-sample pollen concentrations is believed to be due to a loss of pollen from the melt-tank samples during the drilling process.
Article
Full-text available
New observations of long-distance pollen transport to southern Greenland are recorded during the last 2 weeks of May, 2003. The results indicate northeastern North America as the source area of the transported pollen grains as shown in earlier investigations. Backward trajectories indicate that transport occurred twice during the first week corresponding to a time of maximum pollen flux emitted to the atmosphere in the source area. A large percentage of exotic pollen grains were identified, about 11% of the total counted. However, transport during the second week appears to have occurred during a single day at a time of reduced pollen emission into the atmosphere, which was subjected later to severe washout. As a result, only 1% of the total pollen spectra was identified as exotic grains. The back trajectories modeled by the HYSPLIT application differ somewhat from those previously identified in 2002. Although in both years air passing over southern Greenland at 3000 m carried out the main transport, additional transport could have occurred at a much lower altitude in 2003.
Article
A multi-technique approach has been used to study a Pliocene shallow water marine deposit, designated the I OE le de France Formation, in North-East Greenland. The sequence is correlated on the basis of 87 Sr^ 86 Sr ratios in shells and palaeomagnetic studies with the Gauss normal polarity chron, which is dated to between 2.60 and 3.58 Ma years BP. This dating is in accordance with amino acid epimerisation and evidence from dinoflagellates, foraminifers and molluscs. Sediments, marine molluscs and foraminifers show that the sequence was deposited on the inner shelf, below storm wave base. Seawater temperatures were much higher than today, as demonstrated by the occurrence of a number of southern extra-limital species. The same applies to air temperature, and the few remains of land plants may indicate a forested upland with Picea and Thuja. A number of extinct taxa are present, including Nucula jensenii that is erected as a new species.
Article
The pollen content of 77 snow samples, collected at 41 sites in the Canadian Arctic, the adjacent Arctic Ocean and Greenland can be used to identify source regions that produced the assemblages. The major vegetation zones of northern Canada produce distinctive pollen assemblages, and principal components analysis (PCA) indicate that these assemblages are retained even in snow on the sea ice surface. It is shown that pollen percentages and concentrations are related to the density of the regional vegetation and to the distance to the source of more productive regions. Because the pollen grains may be transported for great distances (even to the central regions of the Arctic Ocean), they may be used to indicate the source of that pollen and the trajectory of the air masses that carried and deposited them. Pine is particularly valuable in this sense because it has longer trajectories than other tree pollen. For example, there are indications of "over-the-pole" transport of pollen from higher pine pollen concentrations at the North Pole than on northern Ellesmere Island. Pollen concentrations of certain taxa change significantly at ˜75°N, north of which the concentrations become lower, thereby suggesting that there is a climatic boundary at that latitude. Therefore it would appear that studies of the concentration of pollen in snow have the potential for determining past and present characteristics of atmospheric circulation and also for helping in the development and interpretation of paleoenvironmental records in regions without vegetation, such as ice caps.
Article
Aim The Holocene spread of Picea abies in Fennoscandia is well established from many sites and thus provides an opportunity for detailed study of the dynamics of tree spread and population expansion. Early‐ and mid‐Holocene macrofossil evidence for presence of P. abies in Fennoscandia has questioned traditional interpretations of the timing and direction of its spread. This paper aims to determine when, from where and by which pathways P. abies spread into Fennoscandia. Understanding the character and dynamics of this spread may give insight into the general understanding of Holocene tree spread. Location The north‐western distribution of P. abies in Europe, including Norway, Sweden, Finland, Estonia, Latvia, Lithuania, north‐western Russia, parts of Byelorussia and Poland. Methods Holocene pollen diagrams with independent dating control were collected from this region. The timing of the onset of the continuous curve, the timing of the rise of the curve, the first appearance of frequencies of 1%, 3%, 5%, and 10%, as well as timing and the maximum amount of P. abies pollen, was obtained from these pollen diagrams. A GIS analysis was used to display the data and interpolate ages over the area under investigation. Results Maps are presented showing a clear ESE to WNW trend in the spread of P. abies for all characters interpolated. The timing of the rise of the curve was difficult to use as sites east of the Baltic have slowly rising P. abies frequencies while the western sites often show a rapid rise. Main conclusions The spread of P. abies in Fennoscandia and adjacent areas can be separated into two phases: (i) A rapid early Holocene spread out of Byelorussia and northern Russia at low population density giving rise to small outpost populations, possibly as far west as the Scandes Mountains. (ii) A mid‐ to late Holocene front‐like spread at high population densities moving from east to west into the Baltic Republics and Finland, into northern Scandinavia and then moving south and west towards its present‐day distributional limits.
Article
A new calibration database of census counts of organic-walled dinoflagellate cyst (dinocyst) assemblages has been developed from the analyses of surface sediment samples collected at middle to high latitudes of the Northern Hemisphere after standardisation of taxonomy and laboratory procedures. The database comprises 940 reference data points from the North Atlantic, Arctic and North Pacific oceans and their adjacent seas, including the Mediterranean Sea, as well as epicontinental environments such as the Estuary and Gulf of St. Lawrence, the Bering Sea and the Hudson Bay. The relative abundance of taxa was analysed to describe the distribution of assemblages. The best analogue technique was used for the reconstruction of Last Glacial Maximum (LGM) sea-surface temperature and salinity during summer and winter, in addition to sea-ice cover extent, at sites from the North Atlantic (n=63), Mediterranean Sea (n=1) and eastern North Pacific (n=1). Three of the North Atlantic cores, from the continental margin of eastern Canada, revealed a barren LGM interval, probably because of quasi-permanent sea ice. Six other cores from the Greenland and Norwegian seas were excluded from the compilation because of too sparse assemblages and poor analogue situation. At the remaining sites (n= 54), relatively close modern analogues were found for most LGM samples, which allowed reconstructions. The new LGM results are consistent with previous reconstructions based on dinocyst data, which show much cooler conditions than at present along the continental margins of Canada and Europe, but sharp gradients of increasing temperature offshore. The results also suggest low salinity and larger than present contrasts in seasonal temperatures with colder winters and more extensive sea-ice cover, whereas relatively warm conditions may have prevailed offshore in summer. From these data, we hypothesise low thermal inertia in a shallow and low-density surface water layer.