Food-drug interaction of (-)-epigallocatechin-3-gallate on the pharmacokinetics of irinotecan and the metabolite SN-38

Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
Chemico-Biological Interactions (Impact Factor: 2.58). 07/2008; 174(3):177-82. DOI: 10.1016/j.cbi.2008.05.033
Source: PubMed


The aim of the present study was to investigate the effect of (-)-epigallocatechin-3-gallate (EGCG) on the pharmacokinetics of irinotecan (CPT-11) and its metabolite SN-38. EGCG was potentially used to modulate the ATPase activity of P-glycoprotein (P-gp). Experimental Sprague-Dawley rats were treated with EGCG (20mg/kg, i.v.) 10min before CPT-11 (10mg/kg, i.v.) administration, whereas the control group received CPT-11 (10mg/kg, i.v.) only. The biological samples were prepared by the protein precipitation and detected by HPLC-fluorescence detection which provided a good separation of CPT-11 and SN-38 within 10min. The pharmacokinetic data indicate that the area under the plasma concentration-time curves (AUC) of CPT-11 and SN-38 were increased by 57.7 and 18.3%, and AUC in bile were decreased by 15.8 and 46.8%, respectively, for the group pretreated with EGCG. The blood to bile distribution ratio (AUC(bile)/AUC(blood)) was significantly reduced after group coadministration of EGCG, it can be seen that the bile efflux transport system of CPT-11 and SN-38 may be markedly reduced by the treatment of EGCG which plays the role of P-gp inhibitor. In conclusion, EGCG was found to inhibit the transport of CPT-11 and SN-38 into the biliary elimination and their half-lives in plasma could be substantially prolonged. Based on the food-drug interaction, persons taking daily nutritional supplements should be warned of this interaction possibility.

4 Reads
  • Source
    • "flavonoids alone or in combination with coadministered drugs have been characterized using various methods (Moon and Morris, 2007; Wang and Morris, 2007; Lin et al., 2008; Li and Choi, 2009). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Supported by a usage history that predates written records and the perception that 'natural' ensures safety, herbal products have been incorporated increasingly into Western health care. Consumers often self-administer these products concomitantly with conventional medications without informing their health care provider(s). Such herb-drug combinations can produce untoward effects when the herbal product perturbs the activity of drug metabolizing enzymes and/or transporters. Despite increasing recognition of these types of herb-drug interactions, a standard system for interaction prediction and evaluation is nonexistent. Consequently, the mechanisms underlying herb-drug interactions remain an understudied area of pharmacotherapy. Evaluation of herbal product interaction liability is challenging due to variability in herbal product composition, uncertainty of the causative constituents, and often scant knowledge of causative constituent pharmacokinetics. These limitations are confounded further by the varying perspectives concerning herbal product regulation. Systematic evaluation of herbal product drug interaction liability, as is routine for new drugs under development, necessitates identifying individual constituents from herbal products and characterizing the interaction potential of such constituents. Integration of this information into in silico models that estimate the pharmacokinetics of individual constituents should facilitate prospective identification of herb-drug interactions. These concepts are highlighted with the exemplar herbal products milk thistle and resveratrol. Implementation of this methodology should help provide definitive information to both consumers and clinicians about the risk of adding herbal products to conventional pharmacotherapeutic regimens.
    Preview · Article · Dec 2013 · Drug metabolism and disposition: the biological fate of chemicals
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chemotherapy forms the mainstay of cancer treatment particularly for patients who do not respond to local excision or radiation treatment. However, cancer treatment by drugs is seriously limited by P-glycoprotein (P-gp) associated multi-drug resistance (MDR) in various tumor cells. On the other hand, it is now widely recognized that P-gp also influences drug transport across various biological membranes. P-gp transporter is widely present in the luminal surface of enterocytes, biliary canalicular surface of hepatocytes, apical surface of proximal tubular cells of kidney, endothelial cells of blood brain barrier, etc. thus affecting absorption, distribution, metabolism and excretion of xenobiotics. Clinical significance of above mentioned carrier is appreciated from the fact that more than fifty percent of existing anti-cancer drugs undergo inhibitable and saturable P-gp mediated efflux. Consequently, there is an increasing trend to optimize pharmacokinetics, enhance antitumour activity and reduce systemic toxicity of existing anti-cancer drugs by inhibiting P-gp mediated transport. Although a wide variety of P-gp inhibitors have been discovered, research efforts are underway to identify the most appropriate one. Flavonoids (polyphenolic herbal constituents) form the third generation, non-pharmaceutical category of P-gp inhibitors. The effects produced by some of these components are found to be comparable to those of well-known P-gp inhibitors verapamil and cyclosporine. Identification of effective P-gp modulator among herbal compounds have an added advantage of being safe, thereby making them ideal candidates for bioavailability enhancement, tissue-penetration (e.g. blood brain barrier (BBB)), decreasing biliary excretion and multi-drug resistance modulating agents. The dual effects, i.e. P-gp modulation and antitumor activity, of these herbal derivatives may synergistically act in cancer chemotherapy. This paper presents an overview of the investigations on the feasibility and application of flavonoids as P-gp modulators for improved efficacy of anti-cancer drugs like taxanes, anthracyclines, epipodophyllotoxins, camptothecins and vinca alkaloids. The review also focuses on flavonoid-drug interactions as well as the reversal activity of flavonoids useful against MDR. In addition, the experimental models which could be used for investigation on P-gp mediated efflux are also discussed.
    Full-text · Article · Feb 2009 · Journal of Pharmacy and Pharmaceutical Sciences
  • [Show abstract] [Hide abstract]
    ABSTRACT: Binding sites of polyphenolic compounds on human serum albumin (HSA) were investigated using induced Cotton effects on the circular dichroism (CD) spectra. Polyphenolic compounds used in this study are known to be metabolites from tannins and their related polyphenols in food and medicinal plants. The present investigation revealed that the structural differences markedly affected the binding of the compounds to HSA. Protocatechuic acid, together with its methylated compounds vanillic and isovanillic acids, were assigned to be bound to sites I and II of HSA, based on the competitive relationships with site-I-binding phenylbutazone (PB) and site-II-binding diazepam (DP). 4-O-Methylgallic acid, which is the metabolite from gallic acid, was bound to site I on HSA, while gallic acid did not affect the binding of PB and DP at the concentration examined. Neither ellagic acid nor its metabolite urolithin A was competitive with PB and DP on HSA. The addition of digitoxin did not affect the induced CD of the polyphenolic acids examined.
    No preview · Article · Oct 2009 · Chemical & pharmaceutical bulletin
Show more