Babic I, Jakymiw A, Fujita DJ.. The RNA binding protein Sam68 is acetylated in tumor cell lines, and its acetylation correlates with enhanced RNA binding activity. Oncogene 23: 3781-3789

Department of Biochemistry and Molecular Biology, University of Calgary, Calgary AB, Canada T2N 4N1.
Oncogene (Impact Factor: 8.46). 06/2004; 23(21):3781-9. DOI: 10.1038/sj.onc.1207484
Source: PubMed


Sam68 (Src-associated in mitosis; 68 kDa) is a member of the STAR (signal transduction and activation of RNA) family of KH domain-containing RNA binding proteins. Accumulating evidence suggests that it plays an important role in cell cycle control. Tyrosine phosphorylation by Src family kinases and breast tumor kinase can negatively regulate its RNA binding activity. To date, there are no reports of a factor, such as a phosphatase, which can positively regulate Sam68 association with RNA. Acetylation is a reversible post-translational modification known to influence the activity of DNA binding proteins. However, acetylation of a cellular RNA binding protein as a mechanism for regulating its activity has not yet been reported. Here we demonstrate Sam68 to be acetylated in vivo. A screen of several human mammary epithelial cell lines revealed variations in Sam68 acetylation. Interestingly, the highest level of acetylation was found in tumorigenic breast cancer cell lines. The screen also showed a positive correlation between Sam68 acetylation and its ability to bind RNA. The acetyltransferase CBP was shown to acetylate Sam68 and enhance its binding to poly(U) RNA. These results suggest that Sam68 association with RNA substrates may be positively regulated by acetylation, and that enhanced acetylation and RNA binding activity of Sam68 may play a role in tumor cell proliferation.

Download full-text


Available from: Ivan Babic
  • Source
    • "SAM68 binds to and is methylated by the arginine methyltransferase PRMT1 [20], thus affecting SAM68 interaction with SH3 domains [21] and its nuclear localization [20]. SAM68 acetylation, described in tumorigenic breast cancer cell lines [22], by "
    [Show abstract] [Hide abstract]
    ABSTRACT: Alterations in expression and/or activity of splicing factors as well as mutations in cis -acting splicing regulatory sequences contribute to cancer phenotypes. Genome-wide studies have revealed more than 15,000 tumor-associated splice variants derived from genes involved in almost every aspect of cancer cell biology, including proliferation, differentiation, cell cycle control, metabolism, apoptosis, motility, invasion, and angiogenesis. In the past decades, several RNA binding proteins (RBPs) have been implicated in tumorigenesis. SAM68 (SRC associated in mitosis of 68 kDa) belongs to the STAR (signal transduction and activation of RNA metabolism) family of RBPs. SAM68 is involved in several steps of mRNA metabolism, from transcription to alternative splicing and then to nuclear export. Moreover, SAM68 participates in signaling pathways associated with cell response to stimuli, cell cycle transitions, and viral infections. Recent evidence has linked this RBP to the onset and progression of different tumors, highlighting misregulation of SAM68-regulated splicing events as a key step in neoplastic transformation and tumor progression. Here we review recent studies on the role of SAM68 in splicing regulation and we discuss its contribution to aberrant pre-mRNA processing in cancer.
    Full-text · Article · Aug 2015
  • Source
    • "RNA binding is achieved by a KH domain embedded in a highly conserved region called GSG (GRP/Sam68/GLD1) domain [27] (Figure 1). RNA binding is used for splicing regulation and is modulated by posttranslational modifications, such as phosphorylation or acetylation [22, 25, 28] (Figure 2). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Posttranscriptional gene regulation is a rapid and efficient process to adjust the proteome of a cell to a changing environment. RNA-binding proteins (RBPs) are the master regulators of mRNA processing and translation and are often aberrantly expressed in cancer. In addition to well-studied transcription factors, RBPs are emerging as fundamental players in tumor development. RBPs and their mRNA targets form a complex network that plays a crucial role in tumorigenesis. This paper describes mechanisms by which RBPs influence the expression of well-known oncogenes, focusing on precise examples that illustrate the versatility of RBPs in posttranscriptional control of cancer development. RBPs appeared very early in evolution, and new RNA-binding domains and combinations of them were generated in more complex organisms. The identification of RBPs, their mRNA targets, and their mechanism of action have provided novel potential targets for cancer therapy.
    Full-text · Article · May 2012 · Comparative and Functional Genomics
  • Source
    • "At early stages of DNA damage, DNA sensing molecules (such as PARP and ATM) activate and cause a signaling cascade for repair (Herceg and Wang, 2001). Histone deacetylases (HDAC) are important suppressors of gene transcription, but also deacetylates the p62 subunit of NF-κB increasing its binding to IκB and suppressing innate immunity and interferon-stimulated transcription (Babic et al., 2004; Into et al., 2010). HDACs have been localized to Lewy bodies in patients with PD (Takahashi-Fujigasaki and Fujigasaki, 2006), indicating that they are involved in PD pathogenesis. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetic studies on PARK genes have identified dysfunction in proteasomal, lysosomal, and mitochondrial enzymes as pathogenic for Parkinson's disease (PD). We review the role of these and similar enzymes in mediating innate immune signaling. In particular, we have identified that a number of PARK gene products as well as other enzymes have roles in innate immune signaling as well as DNA repair and regulation, ubiquitination, mitochondrial functioning, and synaptic trafficking. PD enzymatic dysfunction is likely to contribute to inadequate innate immune responses to a variety of extra- and intra-cellular stimuli, with a number of the innate immunity related enzymes found in the characteristic Lewy body pathology of PD. The decrease in innate immunity in PD is associated with an increase in markers of adaptive immunity, and recent GWAS studies have identified variants in human leukocyte antigen region as associated with late-onset sporadic PD (Hamza et al., 2010; Hill-Burns et al., 2011). Intriguing new data also suggest that peripheral immune responses may be involved, giving some potential to alleviate such peripheral dysfunction more directly in patients with PD. It is now important to identify the cell type specific immune responses contributing to the initial changes that occur in PD, as well as to the propagating immune responses important for the progression of PD pathology between cells and within the brain. Overall, a complex interplay between different types of immunity appear to be involved in the underlying pathology of PD.
    Preview · Article · Mar 2012 · Frontiers in Pharmacology
Show more