Neural cell transplantation effects on sciatic nerve regeneration after standardized crush injury in the rat

Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA), Universidade do Porto, Campus Agrário de Vairão, Rua P. Armando Quintas, Vairão, Portugal.
Microsurgery (Impact Factor: 2.42). 01/2008; 28(6):458-70. DOI: 10.1002/micr.20524
Source: PubMed


The goal of the present study was to assess whether in vitro-differentiated N1E-115 cells supported by a collagen membrane would enhance rat sciatic nerve regeneration after a crush injury. To set up an appropriate experimental model for investigating the effects of neural cell transplantation, we have recently described the sequence of functional and morphologic changes occurring after a standardized sciatic nerve crush injury with a nonserrated clamp. Functional recovery was evaluated using the sciatic functional index, the static sciatic index, the extensor postural thrust, the withdrawal reflex latency, and ankle kinematics. In addition, histomorphometric analysis was carried out on regenerated nerve fibers by means of the 2D-disector method. Based on the results of the EPT and of some of the ankle locomotor kinematic parameters analyzed, the hypothesis that N1E-115 cells may enhance nerve regeneration is partially supported although histomorphometry disclosed no significant difference in nerve fiber regeneration between the different experimental groups. Therefore, results suggest that enrichment of equine type III collagen membrane with the N1E-115 cellular system in the rat sciatic nerve crush model may support recovery, at least in terms of motor function. The discrepancy between functional and morphological results also suggests that the combined use of functional and morphological analysis should be recommended for an overall assessment of recovery in nerve regeneration studies.

1 Follower
8 Reads
  • Source
    • "The 3 mm long axonotmetic lesion was wrapped with solid or porous chitosan-GPTMS membranes. Functional recovery was evaluated using the sciatic functional index, the static sciatic index, the extensor postural thrust (EPT), the withdrawal reflex latency (WRL), and ankle kinematics [45–48]. Nerve fiber regeneration was also assessed morphologically using quantitative stereological analysis and electron microscopy. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The treatment of peripheral nerve injuries remains one of the greatest challenges of neurosurgery, as functional recover is rarely satisfactory in these patients. Recently, biodegradable nerve guides have shown great potential for enhancing nerve regeneration. A major advantage of these nerve guides is that no foreign material remains after the device has fulfilled its task, which spares a second surgical intervention. Recently, we studied peripheral nerve regeneration using chitosan-γ-glycidoxypropyltrimethoxysilane (chitosan-GPTMS) porous hybrid membranes. In our studies, these porous membranes significantly improved nerve fiber regeneration and functional recovery in rat models of axonotmetic and neurotmetic sciatic nerve injuries. In particular, the number of regenerated myelinated nerve fibers and myelin thickness were significantly higher in rat treated with chitosan porous hybrid membranes, whether or not they were used in combination with mesenchymal stem cells isolated from the Wharton's jelly of the umbilical cord. In this review, we describe our findings on the use of chitosan-GPTMS hybrids for nerve regeneration.
    Full-text · Article · Jun 2014 · BioMed Research International
  • [Show abstract] [Hide abstract]
    ABSTRACT: This chapter discusses an overview of the strategies used for isolation, purification, and preliminary examination of the polysaccharide components of Gram-negative bacterial glycoconjugates. General principles of the structures of LPSs and extracellular polysaccharides are well known and various aspects of this area are reviewed. The spectrum of LPS molecules extracted from a given culture is heterogeneous. Strains with SLPS show a strain-dependent pattern of O-polysaccharide chain lengths. This is controlled during the biosynthetic process and can be influenced by environmental factors or by lysogenization by bacteriophages. The behaviors of polysaccharides in isolation and fractionation procedures are profoundly influenced by their chemical and physical properties. Moreover, it is apparent that the organization of cell surface polymers and their interrelationships are complex. To avoid overlooking individual structures in complex architectures, these issues are considered when establishing initial extraction and purification approaches.
    No preview · Article · Dec 1998 · Methods in Microbiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many studies have been dedicated to the development of scaffolds for improving post-traumatic nerve regeneration. The goal of this study was to develop and test hybrid chitosan membranes to use in peripheral nerve reconstruction, either alone or enriched with N1E-115 neural cells. Hybrid chitosan membranes were tested in vitro, to assess their ability in supporting N1E-115 cell survival and differentiation, and in vivo to assess biocompatibility as well as to evaluate their effects on nerve fiber regeneration and functional recovery after a standardized rat sciatic nerve crush injury. Functional recovery was evaluated using the sciatic functional index (SFI), the static sciatic index (SSI), the extensor postural thrust (EPT), the withdrawal reflex latency (WRL) and ankle kinematics. Nerve fiber regeneration was assessed by quantitative stereological analysis and electron microscopy. All chitosan membranes showed good biocompatibility and proved to be a suitable substrate for plating the N1E-115 cellular system. By contrast, in vivo nerve regeneration assessment after crush injury showed that the freeze-dried chitosan type III, without N1E-115 cell addition, was the only type of membrane that significantly improved posttraumatic axonal regrowth and functional recovery. It can be thus suggested that local enwrapping with this type of chitosan membrane may represent an effective approach for the improvement of the clinical outcome in patients receiving peripheral nerve surgery.
    Full-text · Article · Dec 2008 · Biomaterials
Show more