Profound defects in pupillary responses to light in TRPM-channel null mice: A role for TRPM channels in non-image-forming photoreception

The Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Level 5-6 West Wing, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK.
European Journal of Neuroscience (Impact Factor: 3.18). 01/2012; 35(1):34-43. DOI: 10.1111/j.1460-9568.2011.07944.x
Source: PubMed


TRPM1 is a spontaneously active non-selective cation channel that has recently been shown to play an important role in the depolarizing light responses of ON bipolar cells. Consistent with this role, mutations in the TRPM1 gene have been identified as a principal cause of congenital stationary night blindness. However, previous microarray studies have shown that Trpm1 and Trpm3 are acutely regulated by light in the eyes of mice lacking rods and cones (rd/rd cl), a finding consistent with a role in non-image-forming photoreception. In this study we show that pupillary light responses are significantly attenuated in both Trpm1(-/-) and Trpm3(-/-) animals. Trpm1(-/-) mice exhibit a profound deficit in the pupillary response that is far in excess of that observed in mice lacking rods and cones (rd/rd cl) or melanopsin, and cannot be explained by defects in bipolar cell function alone. Immunolocalization studies suggest that TRPM1 is expressed in ON bipolar cells and also a subset of cells in the ganglion cell layer, including melanopsin-expressing photosensitive retinal ganglion cells (pRGCs). We conclude that, in addition to its role in bipolar cell signalling, TRPM1 is involved in non-image-forming responses to light and may perform a functional role within pRGCs. By contrast, TRPM3(-/-) mice display a more subtle pupillary phenotype with attenuated responses under bright light and dim light conditions. Expression of TRPM3 is detected in Muller cells and the ciliary body but is absent from pRGCs, and thus our data support an indirect role for TRPM3 in pupillary light responses.

1 Follower
36 Reads
  • Source
    • "In vivo, TRPM3 channel activity has been found to facilitate diverse cellular processes including, insulin release by pancreatic β-cells [47], mechano-sensing in vascular smooth muscle cells [48], and thermo-sensing by dorsal root ganglia neurons [49]. Recently, Trpm3-null mice were found to display an attenuated pupillary light reflex (iris constriction) under bright light and dim light conditions [50]. The abundant expression of Trpm3 in the ciliary body coupled with the requirement for sustained Ca2+ influx during ciliary muscle contraction, support the notion that Trpm3 functions in regulating pupil constriction [50]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Inherited forms of cataract are a clinically important and genetically heterogeneous cause of visual impairment that usually present at an early age with or without systemic and/or other ocular abnormalities. Here we have identified a new locus for inherited cataract and high-tension glaucoma with variable anterior segment defects, and characterized an underlying mutation in the gene coding for transient receptor potential cation channel, subfamily M, member-3 (TRPM3, melastatin-2). Genome-wide linkage analysis mapped the ocular disease locus to the pericentric region of human chromosome 9. Whole exome and custom-target next-generation sequencing detected a heterozygous A-to-G transition in exon-3 of TRPM3 that co-segregated with disease. As a consequence of alternative splicing this missense mutation was predicted to result in the substitution of isoleucine-to-methionine at codon 65 (c.195A>G; p.I65 M) of TRPM3 transcript variant 9, and at codon 8 (c.24A>G; p.I8 M) of a novel TRPM3 transcript variant expressed in human lens. In both transcript variants the I-to-M substitution was predicted in silico to exert damaging effects on protein function. Furthermore, transient expression studies of a recombinant TRPM3-GFP reporter product predicted that the I-to-M substitution introduced an alternative translation start-site located 89 codons upstream from the native initiator methionine found in eight other TRPM3 transcript variants (1-8). Collectively, these studies have provided the first evidence that TRPM3 is associated with inherited ocular disease in humans, and further provide support for the important role of this cation channel in normal eye development.
    Full-text · Article · Aug 2014 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: Photoreceptors carry out the first step in vision by capturing light and transducing it into electrical signals. Rod and cone photoreceptors efficiently translate photon capture into electrical signals by light activation of opsin-type photopigments. Until recently, the central dogma was that, for mammals, all phototransduction occurred in rods and cones. However, the recent discovery of a novel photoreceptor type in the inner retina has fundamentally challenged this view. These retinal ganglion cells are intrinsically photosensitive and mediate a broad range of physiological responses such as photoentrainment of the circadian clock, light regulation of sleep, pupillary light reflex, and light suppression of melatonin secretion. Intrinsically photosensitive retinal ganglion cells express melanopsin, a novel opsin-based signaling mechanism reminiscent of that found in invertebrate rhabdomeric photoreceptors. Melanopsin-expressing retinal ganglion cells convey environmental irradiance information directly to brain centers such as the hypothalamus, preoptic nucleus, and lateral geniculate nucleus. Initial studies suggested that these melanopsin-expressing photoreceptors were an anatomically and functionally homogeneous population. However, over the past decade or so, it has become apparent that these photoreceptors are distinguishable as individual subtypes on the basis of their morphology, molecular markers, functional properties, and efferent projections. These results have provided a novel classification scheme with five melanopsin photoreceptor subtypes in the mammalian retina, each presumably with differential input and output properties. In this review, we summarize the evidence for the structural and functional diversity of melanopsin photoreceptor subtypes and current controversies in the field.
    No preview · Article · Mar 2012 · Progress in Retinal and Eye Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A subset of mammalian retinal ganglion cells expresses an opsin photopigment (melanopsin, Opn4) and is intrinsically photosensitive. The human retina contains melanopsin, but the literature lacks a direct investigation of its spectral sensitivity or G-protein selectivity. Here, we address this deficit by studying physiological responses driven by human melanopsin under heterologous expression in HEK293 cells. Luminescent reporters for common second messenger systems revealed that light induces a high amplitude increase in intracellular calcium and a modest reduction in cAMP in cells expressing human melanopsin, implying that this pigment is able to drive responses via both Gq and Gi/o class G-proteins. Melanopsins from mouse and amphioxus had a similar profile of G-protein coupling in HEK293 cells, but chicken Opn4m and Opn4x pigments exhibited some Gs activity in addition to a strong Gq/11 response. An action spectrum for the calcium response in cells expressing human melanopsin had the predicted form for an opsin : vitamin A1 pigment and peaked at 479 nm. The G-protein selectivity and spectral sensitivity of human melanopsin is similar to that previously described for rodents, supporting the utility of such laboratory animals for developing methods of manipulating this system using light or pharmacological agents.
    Full-text · Article · Mar 2013 · Proceedings of the Royal Society B: Biological Sciences
Show more