Measurement of the Group Velocity of Light in Sea Water at the ANTARES Site

Astroparticle Physics (Impact Factor: 3.58). 10/2011; 35(9). DOI: 10.1016/j.astropartphys.2011.12.003
Source: arXiv


The group velocity of light has been measured at eight different wavelengths
between 385 nm and 532 nm in the Mediterranean Sea at a depth of about 2.2 km
with the ANTARES optical beacon systems. A parametrisation of the dependence of
the refractive index on wavelength based on the salinity, pressure and
temperature of the sea water at the ANTARES site is in good agreement with
these measurements.

Download full-text


Available from: Valentina Giordano
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Attempts to detect high energy neutrinos originating in violent Galactic or Extragalactic processes have been carried out for many years, both using the polar-cap ice and the sea as a target/detection medium. The first large detector built and operated for several years has been the AMANDA Ĉerenkov array, installed under about two km of ice at the South Pole. More recently a much larger detector, ICECUBE has been successfully installed and operated at the same location. Attempts by several groups to install similar arrays under large sea depths have been carried out following the original pioneering attempts by the DUMAND collaboration, initiated in 1990 and terminated only six years later. ANTARES has been so far the only detector deployed at large sea depths and successfully operated for several years. It has been installed in the Mediterranean by a large international collaboration and is in operation since 2007. I describe in the following the experimental technique, the sensitivity of the experiment, the detector performance and the first results that have been obtained in the search for neutrinos from cosmic point sources and on the oscillations of atmospheric neutrinos.
    Full-text · Article · Jun 2013 · Nuclear Physics B - Proceedings Supplements
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ANTARES experiment is currently the largest underwater neutrino telescope in the Northern Hemisphere. It is taking high quality data since 2007. Its main scientific goal is to search for high energy neutrinos that are expected from the acceleration of cosmic rays from astrophysical sources. This contribution reviews the status of the detector and presents several analyses carried out on atmospheric muons and neutrinos. For example it shows the results from the measurement of atmospheric muon neutrino spectrum and of atmospheric neutrino oscillation parameters as well as searches for neutrinos from steady cosmic point-like sources, for neutrinos from gamma ray bursts and for relativistic magnetic monopoles.
    Full-text · Article · Oct 2013 · AIP Conference Proceedings