Article

The transcriptional coactivator TAZ regulates mesenchymal differentiation in malignant glioma

Department of Pathology, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas 77030, USA.
Genes & development (Impact Factor: 10.8). 12/2011; 25(24):2594-609. DOI: 10.1101/gad.176800.111
Source: PubMed

ABSTRACT

Recent molecular classification of glioblastoma (GBM) has shown that patients with a mesenchymal (MES) gene expression signature exhibit poor overall survival and treatment resistance. Using regulatory network analysis of available expression microarray data sets of GBM, including The Cancer Genome Atlas (TCGA), we identified the transcriptional coactivator with PDZ-binding motif (TAZ), to be highly associated with the MES network. TAZ expression was lower in proneural (PN) GBMs and lower-grade gliomas, which correlated with CpG island hypermethylation of the TAZ promoter compared with MES GBMs. Silencing of TAZ in MES glioma stem cells (GSCs) decreased expression of MES markers, invasion, self-renewal, and tumor formation. Conversely, overexpression of TAZ in PN GSCs as well as murine neural stem cells (NSCs) induced MES marker expression and aberrant osteoblastic and chondrocytic differentiation in a TEAD-dependent fashion. Using chromatin immunoprecipitation (ChIP), we show that TAZ is directly recruited to a majority of MES gene promoters in a complex with TEAD2. The coexpression of TAZ, but not a mutated form of TAZ that lacks TEAD binding, with platelet-derived growth factor-B (PDGF-B) resulted in high-grade tumors with MES features in a murine model of glioma. Our studies uncover a direct role for TAZ and TEAD in driving the MES differentiation of malignant glioma.

Download full-text

Full-text

Available from: Frederick F Lang
  • Source
    • "Finally, as Mes-GBM are characterized by elevated levels of TRADD and NF-κB activity[1,2,7,29], the loss of miR-31 may explain, in part, the consequences of activated NF-κB in this GBM subtype. For example, NF-κB induces IL-6 expression to ensure the activation of STAT3[30], a master regulator of Mesenchymal GBMs[31,32]. However, we acknowledge that additional, previously identified targets of miR-31 (E2F2 and radixin) as well as the loss of additional genes at 9p21.3 also impact GBM growth333435. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Glioblastomas (GBMs) are deadly tumors of the central nervous system. Most GBM exhibit homozygous deletions of the CDKN2A and CDKN2B tumor suppressors at 9p21.3, although loss of CDKN2A/B alone is insufficient to drive gliomagenesis. MIR31HG, which encodes microRNA-31 (miR-31), is a novel non-coding tumor suppressor positioned adjacent to CDKN2A/B at 9p21.3. We have determined that miR-31 expression is compromised in >72% of all GBM, and for patients, this predicts significantly shortened survival times independent of CDKN2A/B status. We show that miR-31 inhibits NF-κB signaling by targeting TRADD, its upstream activator. Moreover, upon reintroduction, miR-31 significantly reduces tumor burden and lengthens survival times in animal models. As such, our work identifies loss of miR-31 as a novel non-coding tumor-driving event in GBM.
    Full-text · Article · Jun 2015 · Oncotarget
  • Source
    • "TAZ, as the paralog of YAP, has similar functions to YAP. TAZ increases the expression of several genes that promotes mesenchymal differentiation in malignant glioma [18]. As a result, the cells lose their epithelial properties including presence of polarity, intercellular junctions, and acquire mesenchymal or stem cell-like properties. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: Yes-associated protein (YAP) and PDZ-binding motif (TAZ) are two important effectors of Hippo pathway controlling the balance of organ size and carcinogenesis. Amphiregulin (AREG) is a member of the epidermal growth factor family, a direct target gene of YAP and TAZ. The role of these proteins in hepatocellular carcinoma (HCC) is unclear. Methods: The expression of YAP, TAZ, and AREG in HCC was analyzed by immunohistochemical staining. The level of secreted serum AREG was also assayed by enzyme-linked immunosorbent (ELISA) assay. Results: YAP, TAZ, and AREG were expressed in 69.2% (27/39), 66.7% (26/39), and 61.5% (24/39) of HCC patients. The expression of YAP was significantly correlated with Edmondson stage (P>0.05), serum AFP level (P>0.05), and HCC prognosis (P>0.05). AREG expression was also significantly correlated with Edmondson stage (P>0.05) and serum AFP level (P>0.05). In addition, the expression of serum AREG was higher than serum AFP in HCC patients. Further multivariate analysis showed that YAP expression was an independent prognostic factor that significantly affected the overall survival of HCC patients. Conclusions: YAP maybe an independent prognostic indicator for HCC patients and serum AREG may be a serological biomarker of HCC.
    Full-text · Article · Apr 2014 · Research Journal of Immunology
  • Source
    • "Their overexpression follows the activation of WNT/β-catenin pathway and results in increased in vitro cell migration and invasion [23, 24]. It is likely that the high expression of mesenchymal genes in the mesenchymal subset of human GBMs [25] can be considered to be reminiscent of the EMT program [26] or that the aberrant activation of EMT factors during gliomagenesis can trigger the mesenchymal shift in GBM [27]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Glioblastoma (GBM) stem cells (GSCs), responsible for tumor growth, recurrence, and resistance to therapies, are considered the real therapeutic target, if they had no molecular mechanisms of resistance, in comparison with the mass of more differentiated cells which are insensitive to therapies just because of being differentiated and nonproliferating. GSCs occur in tumor niches where both stemness status and angiogenesis are conditioned by the microenvironment. In both perivascular and perinecrotic niches, hypoxia plays a fundamental role. Fifteen glioblastomas have been studied by immunohistochemistry and immunofluorescence for stemness and differentiation antigens. It has been found that circumscribed necroses develop inside hyperproliferating areas that are characterized by high expression of stemness antigens. Necrosis developed inside them because of the imbalance between the proliferation of tumor cells and endothelial cells; it reduces the number of GSCs to a thin ring around the former hyperproliferating area. The perinecrotic GSCs are nothing else that the survivors remnants of those populating hyperproliferating areas. In the tumor, GSCs coincide with malignant areas so that the need to detect where they are located is not so urgent.
    Full-text · Article · Apr 2014
Show more