Article

The nestin-expressing and non-expressing neurons in rat basal forebrain display different electrophysiological properties and project to hippocampus

Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
BMC Neuroscience (Impact Factor: 2.67). 12/2011; 12(1):129. DOI: 10.1186/1471-2202-12-129
Source: PubMed

ABSTRACT

Nestin-immunoreactive (nestin-ir) neurons have been identified in the medial septal/diagonal band complex (MS/DBB) of adult rat and human, but the significance of nestin expression in functional neurons is not clear. This study investigated electrophysiological properties and neurochemical phenotypes of nestin-expressing (nestin+) neurons using whole-cell recording combined with single-cell RT-PCR to explore the significance of nestin expression in functional MS/DBB neurons. The retrograde labelling and immunofluorescence were used to investigate the nestin+ neuron related circuit in the septo-hippocampal pathway.
The results of single-cell RT-PCR showed that 87.5% (35/40) of nestin+ cells expressed choline acetyltransferase mRNA (ChAT+), only 44.3% (35/79) of ChAT+ cells expressed nestin mRNA. Furthermore, none of the nestin+ cells expressed glutamic acid decarboxylases 67 (GAD(67)) or vesicular glutamate transporters (VGLUT) mRNA. All of the recorded nestin+ cells were excitable and demonstrated slow-firing properties, which were distinctive from those of GAD(67) or VGLUT mRNA-positive neurons. These results show that the MS/DBB cholinergic neurons could be divided into nestin-expressing cholinergic neurons (NEChs) and nestin non-expressing cholinergic neurons (NNChs). Interestingly, NEChs had higher excitability and received stronger spontaneous excitatory synaptic inputs than NNChs. Retrograde labelling combined with choline acetyltransferase and nestin immunofluorescence showed that both of the NEChs and NNChs projected to hippocampus.
These results suggest that there are two parallel cholinergic septo-hippocampal pathways that may have different functions. The significance of nestin expressing in functional neurons has been discussed.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Nestin(+) neurons have been shown to express choline acetyltransferase (ChAT) in the medial septum-diagonal band of Broca in adult rats. This study explored the projection of nestin(+) neurons to the olfactory bulb and the time course of nestin(+) neurons in the medial septum-diagonal band of Broca in adult rats during injury recovery after olfactory nerve transection. This study observed that all nestin(+) neurons were double-labeled with ChAT in the medial septum-diagonal band of Broca. Approximately 53.6% of nestin(+) neurons were projected to the olfactory bulb and co-labeled with fast blue. A large number of nestin(+) neurons were not present in each region of the medial septum-diagonal band of Broca. Nestin(+) neurons in the medial septum and vertical limb of the diagonal band of Broca showed obvious compensatory function. The number of nestin(+) neurons decreased to a minimum later than nestin(-)/ChAT(+) neurons in the medial septum-diagonal band of Broca. The results suggest that nestin(+) cholinergic neurons may have a closer connection to olfactory bulb neurons. Nestin(+) cholinergic neurons may have a stronger tolerance to injury than Nestin(-)/ChAT(+) neurons. The difference between nestin(+) and nestin(-)/ChAT(+) neurons during the recovery process requires further investigations.
    No preview · Article · Feb 2014 · Neural Regeneration Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Exercise has been shown to improve cognitive functioning in a range of species, presumably through an increase in neurotrophins throughout the brain, but in particular the hippocampus. The current study assessed the ability of exercise to restore septohippocampal cholinergic functioning in the pyrithiamine-induced thiamine deficiency (PTD) rat model of the amnestic disorder Korsakoff Syndrome. After voluntary wheel running or sedentary control conditions (stationary wheel attached to the home cage), PTD and control rats were behaviorally tested with concurrent in vivo microdialysis, at one of two time points: 24-h or 2-weeks post-exercise. It was found that only after the 2-week adaption period did exercise lead to an interrelated sequence of events in PTD rats that included: (1) restored spatial working memory; (2) rescued behaviorally-stimulated hippocampal acetylcholine efflux; and (3) within the medial septum/diagonal band, the re-emergence of the cholinergic (choline acetyltransferase [ChAT +]) phenotype, with the greatest change occurring in the ChAT +/nestin + neurons. Furthermore, in control rats, exercise followed by a 2-week adaption period improved hippocampal acetylcholine efflux and increased the number of neurons co-expressing the ChAT and nestin phenotype. These findings demonstrate a novel mechanism by which exercise can modulate the mature cholinergic/nestin neuronal phenotype leading to improved neurotransmitter function as well as enhanced learning and memory.
    Full-text · Article · Jan 2016 · Experimental Neurology