Article

p63 Regulates Human Keratinocyte Proliferation via MYC-regulated Gene Network and Differentiation Commitment through Cell Adhesion-related Gene Network

Commissariat à l'Energie Atomique, Biologie à Grande Echelle, F-38054 Grenoble, France.
Journal of Biological Chemistry (Impact Factor: 4.57). 12/2011; 287(8):5627-38. DOI: 10.1074/jbc.M111.328120
Source: PubMed
ABSTRACT
Although p63 and MYC are important in the control of epidermal homeostasis, the underlying molecular mechanisms governing keratinocyte proliferation or differentiation downstream of these two genes are not completely understood. By analyzing the transcriptional changes and phenotypic consequences of the loss of either p63 or MYC in human developmentally mature keratinocytes, we have characterized the networks acting downstream of these two genes to control epidermal homeostasis. We show that p63 is required to maintain growth and to commit to differentiation by two distinct mechanisms. Knockdown of p63 led to down-regulation of MYC via the Wnt/β-catenin and Notch signaling pathways and in turn reduced keratinocyte proliferation. We demonstrate that a p63-controlled keratinocyte cell fate network is essential to induce the onset of keratinocyte differentiation. This network contains several secreted proteins involved in cell migration/adhesion, including fibronectin 1 (FN1), interleukin-1β (IL1B), cysteine-rich protein 61 (CYR61), and jagged-1 (JAG1), that act downstream of p63 as key effectors to trigger differentiation. Our results characterized for the first time a connection between p63 and MYC and a cell adhesion-related network that controls differentiation. Furthermore, we show that the balance between the MYC-controlled cell cycle progression network and the p63-controlled cell adhesion-related network could dictate skin cell fate.

Full-text

Available from: Xavier Gidrol, Dec 16, 2015