Article

Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat. Nanotechnol. 7, 174-179

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
Nature Nanotechnology (Impact Factor: 34.05). 12/2011; 7(3):174-9. DOI: 10.1038/nnano.2011.223
Source: PubMed

ABSTRACT

The ability to make electrical measurements inside cells has led to many important advances in electrophysiology. The patch clamp technique, in which a glass micropipette filled with electrolyte is inserted into a cell, offers both high signal-to-noise ratio and temporal resolution. Ideally, the micropipette should be as small as possible to increase the spatial resolution and reduce the invasiveness of the measurement, but the overall performance of the technique depends on the impedance of the interface between the micropipette and the cell interior, which limits how small the micropipette can be. Techniques that involve inserting metal or carbon microelectrodes into cells are subject to similar constraints. Field-effect transistors (FETs) can also record electric potentials inside cells, and because their performance does not depend on impedance, they can be made much smaller than micropipettes and microelectrodes. Moreover, FET arrays are better suited for multiplexed measurements. Previously, we have demonstrated FET-based intracellular recording with kinked nanowire structures, but the kink configuration and device design places limits on the probe size and the potential for multiplexing. Here, we report a new approach in which a SiO2 nanotube is synthetically integrated on top of a nanoscale FET. This nanotube penetrates the cell membrane, bringing the cell cytosol into contact with the FET, which is then able to record the intracellular transmembrane potential. Simulations show that the bandwidth of this branched intracellular nanotube FET (BIT-FET) is high enough for it to record fast action potentials even when the nanotube diameter is decreased to 3 nm, a length scale well below that accessible with other methods. Studies of cardiomyocyte cells demonstrate that when phospholipid-modified BIT-FETs are brought close to cells, the nanotubes can spontaneously penetrate the cell membrane to allow the full-amplitude intracellular action potential to be recorded, thus showing that a stable and tight seal forms between the nanotube and cell membrane. We also show that multiple BIT-FETs can record multiplexed intracellular signals from both single cells and networks of cells.

Download full-text

Full-text

Available from: Ruixuan Gao
  • Source
    • "With the incorporation of membrane proteins that form pores with regard to chemical changes in the surrounding media, biological processes like enzymatic reactions can be monitored [12]. Lipid bilayer coating of nanowires could also be important to provide biocompatible surfaces when electrical characteristics of single cells are measured using kinked nanowires131415. Bilayers have potential to mimic cell membranes in the study of transportation mechanisms through membrane channels or drug influences on the membrane stability [16]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The combination of nanoscaled materials and biological self-assembly is a key step for the development of novel approaches for biotechnology and bionanoelectronic devices. Here we propose a route to merge these two subsystems and report on the formation of highly concentrated aqueous solutions of silanized silicon nanowires wrapped in a lipid bilayer shell. We developed protocols and investigated the dynamics of lipid films on both planar surfaces and silicon nanowires using fluorescence recovery after photobleaching, demonstrating fully intact and fluid bilayers without the presence of a lipid molecule reservoir. Finally, the experimental setup allowed for in situ observation of spontaneous bilayer formation around the nanowire by lipid diffusion from a vesicle to the nanowire. Such aqueous solutions of lipid coated nanowires are a versatile tool for characterization purposes and are relevant for newly emerging bioinspired electronics and nanosensorics.
    Full-text · Article · Aug 2013 · Nanotechnology
  • Source
    • "For each NW electrode device, care must be taken to secure a stable intracellular measurement. To improve the stability of the cell-electrode interface and promote NW penetration, Duan et al. coated their devices with a phospholipid (Duan et al., 2012). One drawback to this method is that the phospholipid coating prevents cells from being cultured directly on top of the electrodes . "
    [Show abstract] [Hide abstract]
    ABSTRACT: Brain-machine interfaces (BMIs) that can precisely monitor and control neural activity will likely require new hardware with improved resolution and specificity. New nanofabricated electrodes with feature sizes and densities comparable to neural circuits may lead to such improvements. In this perspective, we review the recent development of vertical nanowire (NW) electrodes that could provide highly parallel single-cell recording and stimulation for future BMIs. We compare the advantages of these devices and discuss some of the technical challenges that must be overcome for this technology to become a platform for next-generation closed-loop BMIs.
    Full-text · Article · Mar 2013 · Frontiers in Neural Circuits
  • Source
    • "Since the recording properties depend, to a large extent, on the electrode surface properties and the tissue reactions to the surface, research on nanostructured surfaces in order to improve recording properties of neural interfaces is crucial. Indeed, nanostructured electrodes are considered as a promising alternative to conventional neuronal interfaces [8]–[11] since they may provide advantages such as a better spatial resolution, a shorter cell-to-electrode distance [12]–[14], as well as improved electrical properties [12], [15]–[18]. They also have a potential for better biocompatibility [18]–[21], less tissue damage [12], [13], [18], [22] and new functionalities, such as selective guidance of neuronal fibers [23]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: We present an electrode, based on structurally controlled nanowires, as a first step towards developing a useful nanostructured device for neurophysiological measurements in vivo. The sensing part of the electrode is made of a metal film deposited on top of an array of epitaxially grown gallium phosphide nanowires. We achieved the first functional testing of the nanowire-based electrode by performing acute in vivo recordings in the rat cerebral cortex and withstanding multiple brain implantations. Due to the controllable geometry of the nanowires, this type of electrode can be used as a model system for further analysis of the functional properties of nanostructured neuronal interfaces in vivo.
    Full-text · Article · Feb 2013 · PLoS ONE
Show more