Article

A new approach to manipulate the fate of single neural stem cells in tissue

Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
Nature Neuroscience (Impact Factor: 16.1). 12/2011; 15(2):329-37. DOI: 10.1038/nn.3008
Source: PubMed

ABSTRACT

A challenge in the field of neural stem cell biology is the mechanistic dissection of single stem cell behavior in tissue. Although such behavior can be tracked by sophisticated imaging techniques, current methods of genetic manipulation do not allow researchers to change the level of a defined gene product on a truly acute time scale and are limited to very few genes at a time. To overcome these limitations, we established microinjection of neuroepithelial/radial glial cells (apical progenitors) in organotypic slice culture of embryonic mouse brain. Microinjected apical progenitors showed cell cycle parameters that were indistinguishable to apical progenitors in utero, underwent self-renewing divisions and generated neurons. Microinjection of single genes, recombinant proteins or complex mixtures of RNA was found to elicit acute and defined changes in apical progenitor behavior and progeny fate. Thus, apical progenitor microinjection provides a new approach to acutely manipulating single neural stem and progenitor cells in tissue.

Download full-text

Full-text

Available from: Elena Taverna, Feb 16, 2014
  • Source
    • "Only recently has the establishment of time-lapse videomicroscopy and transgenesis evolved to the point that direct visualization of AP and BP divisions in organotypic slice cultures became possible [38–40]. Moreover, the identification of molecular markers for BP [37], the generation of transgenic reporter mice allowing their visualization in alive tissues [98, 99], and new methods to genetically manipulate individual cells in brain cortical slices [100] while also monitoring G1/S/G2 progression [101] currently allow us to directly investigate the role of ion channels, pumps, and their effects on membrane potential during mammalian corticogenesis at the single-cell level. Overcoming the use of dissociated cells cultures and uncertainties with regard to the identity of different progenitors subtypes, these powerful new tools may allow us to reveal a new role of bioelectric signaling in NSC differentiation and likely reconcile the different reports that were discussed in this paper. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The concerted action of ion channels and pumps establishing a resting membrane potential has been most thoroughly studied in the context of excitable cells, most notably neurons, but emerging evidences indicate that they are also involved in controlling proliferation and differentiation of nonexcitable somatic stem cells. The importance of understanding stem cell contribution to tissue formation during embryonic development, adult homeostasis, and regeneration in disease has prompted many groups to study and manipulate the membrane potential of stem cells in a variety of systems. In this paper we aimed at summarizing the current knowledge on the role of ion channels and pumps in the context of mammalian corticogenesis with particular emphasis on their contribution to the switch of neural stem cells from proliferation to differentiation and generation of more committed progenitors and neurons, whose lineage during brain development has been recently elucidated.
    Full-text · Article · Sep 2012
  • [Show abstract] [Hide abstract]
    ABSTRACT: During development, cells undergo complex rearrangements that contribute to the final tissue architecture. A characteristic arrangement found in rapidly expanding, highly proliferative tissues is pseudostratified epithelium, which features notably elongated cells with varied nuclear positions along the cell axis. Although anomalies in its structure are implicated in diseases like microcephaly, how pseudostratification is formed and maintained remains elusive. In this review, we focus on a typical feature of pseudostratified epithelia called interkinetic nuclear migration (INM), which describes dynamic movements of nuclei within the elongated cell bodies. We provide an overview of cytoskeletal components underlying INM in different systems, discuss current understanding of its kinetics and timing, and evaluate how conflicting results could be explained through developmental and evolutionary considerations.
    No preview · Article · Dec 2012 · Trends in cell biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neocortex expansion during evolution is associated with the enlargement of the embryonic subventricular zone, which reflects an increased self-renewal and proliferation of basal progenitors. In contrast to human, the vast majority of mouse basal progenitors lack self-renewal capacity, possibly due to lack of a basal process contacting the basal lamina and downregulation of cell-autonomous production of extracellular matrix (ECM) constituents. Here we show that targeted activation of the ECM receptor integrin αvβ3 on basal progenitors in embryonic mouse neocortex promotes their expansion. Specifically, integrin αvβ3 activation causes an increased cell cycle re-entry of Pax6-negative, Tbr2-positive intermediate progenitors, rather than basal radial glia, and a decrease in the proportion of intermediate progenitors committed to neurogenic division. Interestingly, integrin αvβ3 is the only known cell surface receptor for thyroid hormones. Remarkably, tetrac, a thyroid hormone analog that inhibits the binding of thyroid hormones to integrin αvβ3, completely abolishes the intermediate progenitor expansion observed upon targeted integrin αvβ3 activation, indicating that this expansion requires the binding of thyroid hormones to integrin αvβ3. Convergence of ECM and thyroid hormones on integrin αvβ3 thus appears to be crucial for cortical progenitor proliferation and self-renewal, and hence for normal brain development and the evolutionary expansion of the neocortex.
    Preview · Article · Feb 2014 · Development
Show more