ArticlePDF Available

Pregnancy Outcome Following Exposure to Topical Retinoids: A Multicenter Prospective Study

Authors:

Abstract

Concerns have been raised about the use of topical retinoids since the publication of isolated cases of characteristic retinoid embryopathy, originally described after oral use. A collaborative study of the European Network of Teratology Information Services was carried out to evaluate the rate of congenital malformations following first-trimester topical retinoid exposure. A population of 235 exposed pregnant women was compared with 444 controls. No significant differences were observed between groups with regard to the rates of spontaneous abortion (odds ratio [95% confidence interval], 1.5 [0.8-2.7]), minor birth defects (1.3 [0.4-3.7]), and major birth defects (1.8 [0.6-5.4]). No child showed features of retinoid embryopathy. The rate of elective termination in the exposed group was increased 3-fold (3.4 [1.5-7.8]). In conclusion, these results do not suggest an increased risk of retinoid embryopathy. However, according to current knowledge, topical retinoids cannot be advised for use during pregnancy because their risk/benefit ratio remains questionable.
1844 J Clin Pharmacol 2012;52:1844-1851
Human teratogenicity of oral retinoids was clearly
established by the mid-1980s. Their use in preg-
nancy both increases the risk for spontaneous
abortion and leads to the characteristic retinoid
embryopathy, comprising anomalies of the ears,
facial and palate defects, micrognathia, cardiovas-
cular defects, and developmental impairment of
the thymus and the central nervous system.1 Mental
deficiencies have also been reported in children
with no notable physical anomaly exposed in utero
to isotretinoin.2 Consequently, retinoids are consid-
ered to date the most serious teratogenic threat since
thalidomide, and pregnancy prevention programs are
implemented worldwide (eg, iPLEDGE)3 to reduce
inadvertent exposures.4
Topical retinoids are used to treat a variety of
dermatologic conditions, from acne to sun damage.
They are also ingredients commonly found in cos-
meceuticals, making women of childbearing age prime
candidates for their use. Human and animal data
argue against plausible teratogenicity because of
minimal systemic absorption (values measured from
undetectable to a small fraction of the dose, not
exceeding endogenous levels) after topical application
in the absence of significant skin damage.5-10 However,
despite such reassuring considerations, several pub-
lished case reports described infants exposed in utero
Concerns have been raised about the use of topical retinoids
since the publication of isolated cases of characteristic
retinoid embryopathy, originally described after oral use. A
collaborative study of the European Network of Teratology
Information Services was carried out to evaluate the rate of
congenital malformations following first-trimester topical
retinoid exposure. A population of 235 exposed pregnant
women was compared with 444 controls. No significant
differences were observed between groups with regard to
the rates of spontaneous abortion (odds ratio [95% confi-
dence interval], 1.5 [0.8-2.7]), minor birth defects (1.3 [0.4-
3.7]), and major birth defects (1.8 [0.6-5.4]). No child
showed features of retinoid embryopathy. The rate of elec-
tive termination in the exposed group was increased 3-fold
(3.4 [1.5-7.8]). In conclusion, these results do not suggest
an increased risk of retinoid embryopathy. However,
according to current knowledge, topical retinoids can-
not be advised for use during pregnancy because their risk/
benefit ratio remains questionable.
Keywords: Clinical pharmacology; drug information; preg-
nancy; topical retinoid; birth defect
Journal of Clinical Pharmacology, 2012;52:1844-1851
© 2012 The Author(s)
From the Department of Swiss Teratogen Information Service and Division
of Clinical Pharmacology and Toxicology, University Hospital, Lausanne,
Switzerland (Dr Panchaud, Dr Rousso, Dr Winterfeld, Dr Rothuizen, Dr
Buclin); Department of Pharmaceutical Sciences, University of Geneva,
Geneva, Switzerland (Dr Csajka); BELTIS, Rabin Medical Center, Petah
Tikva, Israel (Dr Merlob, Dr Stahl); Pharmakovigilanz- und Beratungszentrum
Embryonaltoxikologie, Berlin, Germany (Dr Schaefer); Drug Consultation–
TIS, Zerifin, Israel (Dr Berlin); Telefono Rosso–TIS, Roma, Italia (Dr De
Santis); Pharmacovigilance, Lyon, France (Dr Vial); TIS AOU Careggi,
Florence, Italy (Dr Ieri); Teratology Information Service, Helsinki University
Central Hospital, Helsinki, Finland (Dr Malm); and Poison Control,
Bergamo, Italy (Dr Eleftheriou). Submitted for publication July 14, 2011;
revised version accepted October 18, 2011. Address for correspondence:
Alice Panchaud, Swiss Teratogen Information Service, STIS, Centre
Hospitalier Universitaire Vaudois, Beaumont-6ème étage, 1011 Lausanne,
Switzerland; e-mail: Alice.Panchaud@chuv.ch.
DOI: 10.1177/0091270011429566
Pregnancy Outcome Following Exposure
to Topical Retinoids: A Multicenter
Prospective Study
Alice Panchaud, PhD, Chantal Csajka, PhD, Paul Merlob, MD,
Christof Schaefer, MD, PhD, Maya Berlin, MMedSc,
Marco De Santis, MD, Thierry Vial, MD, Alessandra Ieri, MD,
Heli Malm, MD, PhD, Georgios Eleftheriou, MD, PhD, MSc,
Bracha Stahl, MPharm, Philippe Rousso, MD, Ursula Winterfeld, PhD,
Laura E. Rothuizen, MD, and Thierry Buclin, MD
Pharmacodynamics
PREGNANCY OUTCOME FOLLOWING EXPOSURE TO TOPICAL RETINOIDS
PHARMACODYNAMICS 1845
to topical tretinoin who exhibited structural abnor-
malities consistent with retinoic acid embryopathy.11-15
In contrast, 3 small epidemiological studies16-18 did
not identify a significantly increased risk associ-
ated with topical tretinoin, for either retinoic acid
embryopathy or major structural defects overall. One
case report on adapalene and 1 epidemiological study
involving tretinoin did not indicate an increased risk
of developmental disorders.19,20 Data on the safety of
several topical retinoids (motretinide, tazarotene,
adapalene) in pregnancy are still missing.
According to current knowledge, health care
practitioners remain reluctant to rule out a potential
for low-level teratogenicity of topical retinoids.21
This might consequently foster maternal fear and
lead to termination of healthy and otherwise wanted
pregnancies even though the risk of malformations
from topical retinoid exposure is not considered
significantly increased by many teratology informa-
tion specialists.22
The purpose of this study was to assess the fre-
quency of a spectrum of adverse birth outcomes
associated with first-trimester exposure to topical
retinoids, to enrich rather scarce human data avail-
able to date. We compared the overall prevalence of
major or minor birth defects at birth, the rate of spon-
taneous abortion, and the rate of elective termination
of pregnancy after first-trimester exposure to topical
retinoids with the baseline prevalence in pregnan-
cies exposed to no known teratogen.
METHOD
Our prospective, controlled, multicenter, observa-
tional study involved 11 teratology information ser-
vices (TIS). It enrolled pregnant women exposed
during the first trimester to topical retinoids, and
these women or their doctors contacted a TIS to seek
advice between 1992 and 2006. Patients were asked
for consent to further gather follow-up information.
The 11 TIS centers are members of the European
Network of Teratology Information Services (ENTIS),
an organization of services providing evidence-based
information on the safety and risks associated with
exposure to drugs during pregnancy and breastfeed-
ing, using similar methodology. Furthermore, ENTIS
members document prospectively the course of
exposed pregnancies to study drug safety with respect
to developmental toxicity.23 The study was approved
by the ENTIS investigational committee.
Women were exposed to adapalene, tretinoin,
isotretinoin, motretinide, retinol, or tazarotene; if
more than 1 topical retinoid was used, exposure was
classified as a combination. The exposed group was
compared with an ENTIS control group of women
who had used drugs known to be nonteratogenic
during pregnancy (eg, paracetamol, labetalol,
meclozine, loratadine, salbutamol, ranitidine, amox-
icillin, omeprazol, budesonide inhalation). Controls
were enrolled in the same TIS/country, in a similar
timeframe. Similar documentation and follow-up
methodology were used in both the exposed preg-
nancies and the controls. To strengthen the power of
our study, a 1:2 ratio was used between the size of
the cohort exposed to topical retinoids and of the
control group. Each case of topical retinoid exposure
was to be matched with 2 controls of the same center
for maternal age and gestational age at the time of
the call.
Using structured questionnaires or phone inter-
views, exposure details (drug, time of exposure,
dose), concomitant medication, maternal demograph-
ics, and medical and obstetric histories were col-
lected prospectively for each pregnant woman (ie,
topical retinoid use or control group).24
After the predicted date of birth, follow-up infor-
mation was requested through structured telephone
interviews and/or mailed questionnaires sent to the
mothers or physicians. Details on pregnancy out-
come, gestational age at delivery, birth weight, con-
genital anomalies, and neonatal complications were
obtained. In most cases, gathering of follow-up data
was performed during the neonatal period. Pregnant
women considered lost to follow-up were not included
in the analysis (overall rate of loss to follow-up in
the ENTIS group is known to range from 10% to 40%
and is expected to be similar in both groups). A
variable was not considered for analysis if more than
30% of the data were missing.
The primary outcome of interest was the rate of
major birth defects, defined as having serious medi-
cal, surgical, or cosmetic consequences,25 and minor
birth defects with special attention to anomalies
indicative of retinoid embryopathy. All reported
birth defects in exposed and control newborns were
sent to an ENTIS birth defect specialist, who blindly
classified them between major and minor. Secondary
end points were the rates of live births, spontaneous
abortions, pregnancy terminations (elective or ther-
apeutic), stillbirths, premature births (<37 weeks),
gestational age at term, and birth weight. Gestational
age in the present study is defined as the number of
weeks after the last menstrual period.
The proportion of major or minor birth defects,
spontaneous abortions, elective or therapeutic abor-
tions, and live births reported in the exposed group
1846 J Clin Pharmacol 2012;52:1844-1851
PANCHAUD ET AL
was compared with the control group using a χ2 test
or Fisher exact test when assumptions for χ2 were
not met. In addition, a 95% confidence interval (CI)
was defined using odds ratio (OR) calculation for
major and minor birth defect rates. All continuous
variables of interest, such as gestational age at birth
and birth weight, were compared between the
exposed and the control groups using the Student t
test or Wilcoxon test when assumptions for paramet-
ric tests were not met. The level of statistical signifi-
cance was set at P < .05 for the primary outcome. For
all other outcomes, P values were presented only for
exploratory comparisons. To assess the impact of
heterogeneity among retinoids, we applied an anal-
ysis of deviance in the framework of logistic regres-
sion analysis for categorical data and an analysis of
variance (ANOVA; with error sum of squares) for
continuous data.
We used a retrospective power calculation to esti-
mate the minimal detectable difference with the
available sample size (ie, estimation of the statistical
power of the study to detect an increase in birth
defects after topical retinoid exposure). This estima-
tion was performed assuming a significant level (α =
0.05) and a type II error rate (β = 0.2), as well as a
baseline incidence as the rate found in the control
group (1-tailed test).
The χ2 test, Student test, Wilcoxon test, logistic
regression, ANOVA, and power calculation were per-
formed using STATA version 9.2 (StataCorp, College
Station, Texas).
RESULTS
Eleven TIS of the European Network participated in
the study. Three centers could not provide controls
as requested. The Berlin TIS provided the missing
controls for Europe and Zerifin for Israel (Table I). A
total of 235 pregnancy outcomes were recorded fol-
lowing exposure to various topical retinoids (treti-
noin, n = 143; isotretinoin, n = 52; adapalene, n = 24;
retinoic acid, n = 10; motretinide, n = 1; combina-
tion, n = 5; Table II), and 444 matched outcomes in
controls exposed to drugs considered nonteratogens
were collected. Several descriptive variables were
not considered for analysis as they comprised more
than 30% of missing values (eg, street drug use,
detailed concomitant medication, gestity, parity,
social status).
Almost all patients treated with topical retinoids
were exposed from the beginning of pregnancy, with
the treatment having been started before conception.
The mean start time of exposure was 1.8 ± 3.2 gesta-
tional weeks. Most pregnant women stopped topi-
cal retinoids when pregnancy was confirmed, thus
yielding a mean time of exposure of 8.1 ± 5.8 gesta-
tional weeks. The most frequent treatment indica-
tion was acne (n = 174). Psoriasis, alopecia, bleaching,
dermatitis, and cellulitis were less often reported.
Maternal characteristics of patients in the topical
retinoids group and the control group are presented
in Table III. Except for a slight difference in maternal
age, there were no significant differences in any of
the maternal characteristics in both groups. Women
Table I Teratogen Information Services
Retinoids
(n = 235)
Controls
(n = 444)
Servicio de Información Telefónica
sobre Teratógenos Español
(Madrid, Spain)
19 0
Servizio di Tossicologica Perinatale
(Firenze, Italy)
19 21
Beilinson Teratology Information
Service (Tel Aviv, Israel)
13 28
Israel Teratogen Information service
(Jerusalem, Israel)
27 0
TIS-Helsinki (Finland) 8 16
Centre de Pharmacovigilance
(Lyon, France)
26 52
Poison Control Centre (Bergamo,
Italy)
6 16
TelefonoRosso (Rome, Italy) 27 56
Drug Consultation Information
Center (Zerifin, Israel)
4 64
Swiss Teratogen Information
Service (Lausanne, Switzerland)
13 0
Pharmakovigilanz- und
Beratungszentrum
Embryonaltoxikologie (Berlin,
Germany)
73 191
Table II Retinoids Identified
Retinoids (n = 235)
Tretinoin 143
Isotretinoin 52
Adapalene 24
Retinoic acid 10
Motretinide 1
Combination 5
PREGNANCY OUTCOME FOLLOWING EXPOSURE TO TOPICAL RETINOIDS
PHARMACODYNAMICS 1847
Table III Maternal Data
Retinoids Controls P Valuea
Maternal age 222 435
Median, y [range] 30 [21-42] 32 [17-48] .0024
<24, No. (%) 25 (11) 36 (8)
25-30, No. (%) 90 (40) 130 (30)
31-35, No. (%) 70 (32) 168 (39)
35, No. (%) 37 (17) 101 (23)
Gestational weeks at call
Median, wk [range] 7 [3-35] 8 [2-39] .23
Tobacco use, No. (%) 23 (12) 32 (7) .14
Alcohol use, No. (%) 10 (5) 13 (3) .38
a. χ2/Fisher exact or Student/Wilcoxon tests.
Table IV Pregnancy Outcomes and Newborn Data
Retinoids Controls P Valuea
Live born, No. (%) 200 (85) 410 (92)
Spontaneous abortion, No. (%) 19 (8) 26 (6) .19
Elective termination, No. (%) 15 (6) 7 (2) <.001
Therapeutic termination, No. (%) 1 (<1) 0 (0) .16
Fetal death, No. (%) 0 (0) 1 (<1) .65
Gestational age at term
Mean ± SD, wk 39.4 ± 1.9 39.4 ± 2.1 .43
<37 wk, No. (%) 9 (5) 29 (7) .32
Birth weight (n = 192) (n = 362)
Mean ± SD, g 3301 ± 495 3324 ± 567 .32
Sex (n = 193) (n = 349)
Male, No. (%) 94 (49) 178 (51) .55
a. χ2/Fisher exact or Student/Wilcoxon tests.
in both groups were enrolled in the study at a simi-
lar gestational timing, on average at the end of their
second month of pregnancy.
Pregnancy and newborn outcomes are detailed in
Table IV. A total of 200 live births, 19 spontaneous
abortions, 15 elective terminations, 1 therapeutic
termination, and no stillbirths were observed in
the group exposed to topical retinoids. None of the
children showed features of retinoid embryopathy.
The mean (SD) gestational age at delivery was 39.4
(1.9) weeks, and mean (SD) birth weight was 3301
(495) g. Pregnancy outcomes in the control group
included 410 live births, 26 spontaneous abortions,
7 elective terminations, 0 therapeutic terminations,
and 1 stillbirth. The mean (SD) gestational age at
delivery was 39.4 (2.1) weeks, and mean (SD) birth
weight was 3324 (567) g.
The proportion of mothers who spontaneously
aborted or had a therapeutic termination of preg-
nancy was not significantly different in the topical
retinoids group compared with the control group
(8% vs 6% for spontaneous abortion: P = .19; less
than 1% vs 0% for therapeutic termination: P = .16).
However, women in the exposed group were more
likely to undergo elective termination of their preg-
nancy (6% in the exposed group vs 2% in the control
group; P < .001). Gestational age at term, as calcu-
lated from the first day of the last menstrual period
1848 J Clin Pharmacol 2012;52:1844-1851
PANCHAUD ET AL
Table V Birth Defects in Retinoid and Control Group
Retinoids (n = 235) Controls (n = 444) Odds Ratio (95% Confidence Interval)
Major birth defects, No. (%) 8 (3.4) 9 (2.0) 1.8 (0.6-5.4)
Major birth defects in the retinoids group:
n = 1, congenital cerebral cysts (newborn with autism)
n = 1, bilateral polycystic kidneys (early termination of pregnancy at 21 weeks)
n = 1, hemangiomas (all body)
n = 1, angiomas (feet and back)
n = 1, congenital cataract (right eye)
n = 1, microphthalmia (right eye)
n = 1, cleft soft palate
n = 1, ventricular septal defect + congenital pulmonary valve stenosis + coarctation of
aorta + undescended testicle
Minor birth defects, No. (%) 7 (3.0) 11 (2.5) 1.3 (0.4-3.7)
Minor birth defects in the retinoids group:
n = 2, ankyloglossia
n = 1, ear lobe undeveloped
n = 1, blurred vision (hypermetropia)
n = 1, congenital nonneoplastic nevus
n = 1, metatarsus varus
n = 1, other misshapen ear (similar to mother’s ears)
or according to standard algorithms for uncertain
dates or discrepant ultrasound dating, was similar in
both groups (mean [SD], 39.4 [1.9] vs 39.4 [2.1] weeks;
P = .43). The proportion of preterm infants (<37 com-
pleted weeks’ gestation) did not significantly differ
between study groups (5% for the retinoids group vs
7% for the control group; P = .32). No statistical dif-
ference in birth weight was detected (P = .32).
Eight major and 7 minor birth defects among live-
born infants were observed in the retinoids group
compared with 9 and 11, respectively, in the control
group (Table V). One of the major birth defects (ie,
bilateral polycystic kidneys) was diagnosed at week
21 of pregnancy and led to therapeutic termination.
Other than this case, no elective termination or
spontaneous abortion is known to have been moti-
vated or shown by a major malformation. However,
no systematic histopathologic investigation was con-
ducted. There were no significant differences between
the exposed and control groups in the occurrence of
major birth defects (OR [CI], 1.8 [0.6-5.4]) and minor
birth defects (1.3 [0.4-3.7]). Furthermore, none of the
children showed features of retinoid embryopathy in
the retinoids group.
Based on 235 topical retinoid exposures and 444
controls, our study had sufficient power (80%) to
detect a 2.4 increase in the risk for major birth defects
and a 2.5 increase for minor birth defects (α = 0.05
and β = 0.2).
DISCUSSION
To our knowledge, this is the largest prospective
cohort study on reproductive safety of topical reti-
noids during pregnancy. Consistent with previously
published epidemiologic observations, we found no
significant differences in infants exposed to topi-
cal retinoids compared with controls on any out-
come measured, except for elective pregnancy
termination. Furthermore, we found no evidence
of an increase in anomalies consistent with reti-
noic acid embryopathy.
Our findings are also consistent with the lack of
biological plausibility for a teratogenic effect due to
limited systemic bioavailability of retinoids applied
by the transdermal route.6,26 Although appropriate
levels of retinol must be maintained for normal embry-
ogenesis, both deficiencies and excess levels may
be teratogenic. The exogenous application of topical
retinoids is not expected to significantly increase
endogenous levels. A physiologically based pharma-
cokinetic evaluation of topical retinoids predicted that
PREGNANCY OUTCOME FOLLOWING EXPOSURE TO TOPICAL RETINOIDS
PHARMACODYNAMICS 1849
systemic exposure to tretinoin through the skin results
in a 4 to 5 order of magnitude lower exposure than a
minimally teratogenic dose.5 Furthermore, the results
of various studies on the systemic absorption of
retinoids after topical use suggest very low plasmatic
levels. Neither single-dose nor long-term treatment
with topical 0.05% tretinoin cream affected endoge-
nous levels of tretinoin or its metabolites.7 After 42
days of an excessive application of 0.1% isotretinoin
cream, plasma concentrations indicated systemic
absorption but to a lesser extent than reported after
oral intake of 5000 IU of vitamin A supplementa-
tion.27 After topical treatment of the entire facial area
with adapalene 0.1% gel once daily for 12 weeks, no
adapalene could be detected in the plasma of exposed
patients.28 The systematic bioavailability of tazarotene
nears 1% of the dose after single or multiple applica-
tions to healthy skin but might increase up to 5%
under steady-state conditions in patients with psoria-
sis.8 In summary, under usual therapeutic use condi-
tions, an increase in plasma concentration resulting
from topical retinoid application is expected to be far
less than naturally occurring (endogenous) retinoid
plasma levels.
Several case reports of malformations compatible
with retinoid embryopathy after maternal use of topi-
cal tretinoin during the first trimester of pregnancy
nevertheless have been published.11-15 Although it is
certainly possible that these associations were coin-
cidental, a specific individual susceptibility to the
risk of embryopathy from topical retinoids use can-
not be completely ruled out.
The increased number of elective terminations of
pregnancy after inadvertent exposure to topical reti-
noids could not be attributed directly as a cause for
elective termination of pregnancy, as information on
factors influencing the patient’s decision to termi-
nate pregnancy was not reported. However, it is pos-
sible that patients’ or providers’ perceptions of fetal
risk might have contributed to this eventuality. Since
the thalidomide disaster, a high level of anxiety
among patients and physicians has been observed
regarding the use of drugs in general during preg-
nancy. For drugs associated with negative outcomes,
this anxiety can even become deleterious. Thus,
doubts on the safety of a drug can lead to potential
harmful effects such as psychological distress,
abrupt discontinuation of needed medication, and
even termination of healthy and otherwise wanted
pregnancies.29,30
In our study, different retinoids were pooled
together for the statistical analysis. Different com-
pounds, however, may have a different teratogenic
potential, depending on their pharmacotoxicological
activity or susceptibility to absorption in the sys-
temic circulation. The impact of this heterogeneity
on primary end points was explored by logistic
regression analysis, and no effect was observed.
It is well known that the prevalence of congenital
malformations is linked to maternal age. Yet, the dif-
ference observed (32 vs 30 years) is not expected to
significantly change the prevalence of overall con-
genital birth defects according to previous findings.31
This was confirmed by a regression analysis that
indicated that the slight age difference reported in
our study had no impact on the major and minor
birth defect rates (results not shown).
The limitations of this study involve in particular
the relatively small sample size, despite data col-
lected over 10 years and the contribution of 11 TIS
centers. Based on 235 topical retinoid exposure
cases, our study had the power to detect a 2 to 3
times increase in the risk of birth defects. Loureiro
et al17 calculated that their sample size (N = 106) was
sufficient to rule out a 4-fold risk for all major struc-
tural defects combined. Even if the absence of fea-
tures compatible with retinoid embryopathy is
clearly reassuring, smaller effects may not have been
detected. Thus, it is important that more research
is conducted to increase sample size and allow for
detection of infrequent outcomes. Although the
response rate was not 100%, it is important to note
that the rate of loss to follow-up is expected to be the
same in the exposed group and control group as the
cases lost to follow-up are mostly due to technical
reasons (eg, change of address), which should ran-
domly occur, and not because of a refusal to fill in the
questionnaire. We therefore believe that this does not
introduce a significant selection bias. Another limita-
tion was that some factors considered potential con-
founders were not fully documented (ie, street drug
use, concomitant medication, gestity, parity, social
status) for analysis. The effects of potent teratogens
are likely to outweigh concerns surrounding adjust-
ment for confounders. Additional data on potential
confounders, however, would contribute to quantify
moderate increases in risk. Teratogen information
services are likely to provide the most accurate infor-
mation because most cases are reviewed by an expert
in teratology, and the reporter is usually the obstetri-
cian attending the birth. Such centers encourage
follow-up by minimizing the effort for the physician
in terms of paperwork and time, though, thus leading
to a lack of completeness of outcome data. Finally,
other limitations of the study are as follows: recruit-
ment not early enough to assess risk for early first-
trimester miscarriage; reliance on maternal interview
as a source for outcome data in a large proportion of
1850 J Clin Pharmacol 2012;52:1844-1851
PANCHAUD ET AL
cases; variation in timing of follow-up; combining
data from 11 TIS, including 3 centers without control
data (a subanalysis showed no significant difference
on primary end points); and a nonrandomized design
with no blindness to exposure. However, applying
the same procedure to both groups and the prospec-
tive nature of data collected minimize potential biases
(eg, no significant difference on primary end points
observed between recruitment centers; P = .8 for
major birth defects and P = .1 for minor birth defects).
Although not ideal compared with prospective, ran-
domized control trials, such epidemiological sur-
veys have the advantage of easier feasibility and the
merit of providing rapidly useful information.
In summary, women exposed to topical retinoids
during the first trimester of pregnancy do not seem at
higher risk for major birth defects in neonates, above
the baseline rate of 1% to 3%. Furthermore, this study
found no evidence of an increase in anomalies consist-
ent with retinoic acid embryopathy. This evidence-
based information can be helpful to women and health
care professionals who are facing a pregnancy diagno-
sis after maternal exposure to topical retinoids. These
results, together with the previous epidemiologic
observations, allow for reassurance in cases of inad-
vertent exposure during pregnancy. However, accord-
ing to the current knowledge, topical retinoids certainly
cannot be advised for use during pregnancy, as their
risk/benefit ratio remains uncertain.
The authors thank the members of the TIS Madrid (Spain) and
TIS Jerusalem (Israel) who have completed the first part of the
study providing 46 exposed cases.
Financial disclosure: None declared.
REFERENCES
1. Lammer EJ, Schunior A, Hayes AM, et al. Isotretinoin dose and
teratogenicity. Lancet. 1988;2(8609):503-504.
2. Adams J, Lammer EJ. Neurobehavioral teratology of isotreti-
noin. Reprod Toxicol. 1993;7(2):175-177.
3. US Food and Drug Administration. iPLEDGE. http://www.fda.
gov/Drugs/DrugSafety/Postmarket DrugSafety Informationfor
PatientsandProviders/ucm094305.htm. Accessed July 14, 2011.
4. De Santis M, Straface G, Cavaliere A, et al. The need for
restricted prescription of retinoic acid derivative isotretinoin
to prevent retinoid teratogenicity. Prev Med. 2007;45(2-3):
243-244.
5. Clewell HJ, Andersen ME, Wills RJ, et al. A physiologically
based pharmacokinetic model for retinoic acid and its metabolites.
J Am Acad Dermatol. 1997;36(3, pt 2):S77-S85.
6. Jensen BK, McGann LA, Kachevsky V, et al. The negligible
systemic availability of retinoids with multiple and excessive
topical application of isotretinoin 0.05% gel (Isotrex) in patients
with acne vulgaris. J Am Acad Dermatol. 1991;24(3):425-428.
7. Latriano L, Tzimas G, Wong F, et al. The percutaneous
absorption of topically applied tretinoin and its effect on end-
ogenous concentrations of tretinoin and its metabolites after
single doses or long-term use. J Am Acad Dermatol. 1997;36(3, pt 2):
S37-S46.
8. Tang-Liu DD, Matsumoto RM, Usansky JI. Clinical pharmacoki-
netics and drug metabolism of tazarotene: a novel topical treatment
for acne and psoriasis. Clin Pharmacokinet. 1999;37(4):273-287.
9. Van Hoogdalem EJ, Baven TL, Spiegel-Melsen I, et al.
Transdermal absorption of clindamycin and tretinoin from topi-
cally applied anti-acne formulations in man. Biopharm Drug
Dispos. 1998;19(9):563-569.
10. Willhite CC, Sharma RP, Allen PV, et al. Percutaneous retinoid
absorption and embryotoxicity. J Invest Dermatol. 1990;95(5):
523-529.
11. Camera G, Pregliasco P. Ear malformation in baby born to
mother using tretinoin cream. Lancet. 1992;339(8794):687.
12. Colley SM, Walpole I, Fabian VA, et al. Topical tretinoin and
fetal malformations. Med J Aust. 1998;168(9):467.
13. Lipson AH, Collins F, Webster WS. Multiple congenital
defects associated with maternal use of topical tretinoin. Lancet.
1993;341(8856):1352-1353.
14. Navarre-Belhassen C, Blanchet P, Hillaire-Buys D, et al.
Multiple congenital malformations associated with topical treti-
noin. Ann Pharmacother. 1998;32(4):505-506.
15. Selcen D, Seidman S, Nigro MA. Otocerebral anomalies asso-
ciated with topical tretinoin use. Brain Dev. 2000;22(4):218-220.
16. Jick SS, Terris BZ, Jick H. First trimester topical tretinoin and
congenital disorders. Lancet. 1993;341(8854):1181-1182.
17. Loureiro KD, Kao KK, Jones KL, et al. Minor malformations
characteristic of the retinoic acid embryopathy and other birth
outcomes in children of women exposed to topical tretinoin dur-
ing early pregnancy. Am J Med Genet A. 2005;136(2):117-121.
18. Shapiro L, Pastuszak A, Curto G, et al. Safety of first-trimester
exposure to topical tretinoin: prospective cohort study. Lancet.
1997;350(9085):1143-1144.
19. Autret E, Berjot M, Jonville-Bera AP, et al. Anophthalmia and
agenesis of optic chiasma associated with adapalene gel in early
pregnancy. Lancet. 1997;350(9074):339.
20. Carlier P, Choulika S, Dally S. Topical retinoids exposure in
pregnancy. Thérapie. 1998;53:180.
21. Martinez-Frias ML, Rodriguez-Pinilla E. First-trimester expo-
sure to topical tretinoin: its safety is not warranted. Teratology.
1999;60(1):5.
22. Bozzo P, Chua-Gocheco A, Einarson A. Safety of skin care prod-
ucts during pregnancy. Can Fam Physician. 2011;57(6):665-667.
23. Schaefer C, Hannemann D, Meister R. Post-marketing surveil-
lance system for drugs in pregnancy: 15 years experience of
ENTIS. Reprod Toxicol. 2005;20(3):331-343.
24. Clementi M, Di Gianantonio E, Ornoy A. Teratology informa-
tion services in Europe and their contribution to the prevention
of congenital anomalies. Community Genet. 2002;5(1):8-12.
25. Rasmussen SA, Olney RS, Holmes LB, et al. Guidelines for
case classification for the National Birth Defects Prevention Study.
Birth Defects Res A Clin Mol Teratol. 2003;67(3):193-201.
PREGNANCY OUTCOME FOLLOWING EXPOSURE TO TOPICAL RETINOIDS
PHARMACODYNAMICS 1851
26. Buchan P, Eckhoff C, Caron D, et al. Repeated topical admin-
istration of all-trans-retinoic acid and plasma levels of retinoic
acids in humans. J Am Acad Dermatol. 1994;30(3):428-434.
27. Chen C, Jensen BK, Mistry G, et al. Negligible systemic absorp-
tion of topical isotretinoin cream: implications for teratogenicity.
J Clin Pharmacol. 1997;37(4):279-284.
28. Shalita A, Weiss JS, Chalker DK, et al. A comparison of the
efficacy and safety of adapalene gel 0.1% and tretinoin gel 0.025%
in the treatment of acne vulgaris: a multicenter trial. J Am Acad
Dermatol. 1996;34(3):482-485.
29. Koren G, Bologa M, Long D, et al. Perception of teratogenic
risk by pregnant women exposed to drugs and chemicals during
the first trimester. Am J Obstet Gynecol. 1989;160(5, pt 1):
1190-1194.
30. Nordeng H, Ystrom E, Einarson A. Perception of risk regarding
the use of medications and other exposures during pregnancy. Eur
J Clin Pharmacol. 2010;66(2):207-214.
31. Croen LA, Shaw GM. Young maternal age and congenital malfor-
mations: a population-based study. Am J Public Health. 1995;85(5):
710-713.
For reprints and permission queries, please visit SAGE’s Web site at http://www.sagepub.com/journalsPermissions.nav.
... A burning sensation at the application site often occurs when the agent is used topically. Furthermore, the teratogenicity of retinoids should also not be ignored [34,35]. Terefore, using the existing retinoids solely to treat OLK, especially when used in large doses, is not advisable. ...
Article
Full-text available
Oral leukoplakia (OLK) is one of the most common oral potentially malignant disorders (OPMDs). Preventing malignant transformation is the main purpose of OLK treatment. The treatment approaches of OLK include surgery, chemotherapy, and other therapies, such as photodynamic therapy and CO2 laser. The application of genomic variation-based chemotherapy in OLK deserves further exploration. As chemopreventive drugs, drug resistance and disease recurrence have limited their use in OLK. In this review, we concentrate on the retinoid treatment for OLK, summarizing the current status of retinoids in the treatment of OLK, the mechanism of retinoid action, and the mechanisms of resistance to retinoid therapy, and we highlight the strategies to improve retinoid efficacy in the treatment of OLK, such as the combination of retinoids and epigenetic regulators or metabolism-blocking agents, new synthetic retinoids, and new drug delivery systems of retinoids, providing new methods for the successful clinical application of retinoids in the treatment of OLK.
... There are case reports in the literature indicating ear, cerebral, and cardiac malformations, but it is unclear if these were related to the use of tretinoin. [67][68][69] Providers should seek to document clearly and carefully in all instances of dermatological treatment during pregnancy. 70 ...
Article
Full-text available
In 2014, the US FDA removed the Pregnancy Category Drug lettering system and enacted the “Pregnancy and Lactation Label Ruling.” This ruling required drug products to contain contact information for drug-specific exposure pregnancy registries, narrative-style sections summarizing the known effect of pregnancy, lactation counseling data, and data describing risks for females and males of reproductive potential. This new ruling has added more dialogue and discussion to the patient-provider decision-making process and equires clinicians to provide more individualized counseling based on the current medical literature. This article summarizes the recent evidence for the safety of the most common dermatological therapies for pregnant and lactating women.
... Acitretin, alitretinoin, and isotretinoin are the oral retinoids authorised in the European Union (EU). To minimise risk, risk minimisation measures (RMMs) have been requested by regulators and pregnancy prevention programmes (PPPs) put in place worldwide (Shin et al., 2011;Panchaud et al., 2012;Pinheiro et al., 2013). In 2003, a PPP was implemented in the EU for oral retinoids. ...
Article
Full-text available
Background: In March 2018, the European pregnancy prevention programme for oral retinoids was updated as part of risk minimisation measures (RMM), emphasising their contraindication in pregnant women. Objective: To measure the impact of the 2018 revision of the RMMs in Europe by assessing the utilisation patterns of isotretinoin, alitretinoin and acitretin, contraceptive measures, pregnancy testing, discontinuation, and pregnancy occurrence concomitantly with a retinoid prescription. Methods: An interrupted time series (ITS) analysis to compare level and trend changes after the risk minimisation measures implementation was conducted on a cohort of females of childbearing age (12–55 years of age) from January 2010 to December 2020, derived from six electronic health data sources in four countries: Denmark, Netherlands, Spain, and Italy. Monthly utilisation figures (incidence rates [IR], prevalence rates [PR] and proportions) of oral retinoids were calculated, as well as discontinuation rates, contraception coverage, pregnancy testing, and rates of exposed pregnancies to oral retinoids, before and after the 2018 RMMs. Results: From 10,714,182 females of child-bearing age, 88,992 used an oral retinoid at any point during the study period (mean age 18.9–22.2 years old). We found non-significant level and trend changes in incidence or prevalence of retinoid use in females of child-bearing age after the 2018 RMMs. The reason of discontinuation was unknown in >95% of cases. Contraception use showed a significant increase trend in Spain; for other databases this information was limited. Pregnancy testing was hardly recorded thus was not possible to model ITS analyses. After the 2018 RMM, rates of pregnancy occurrence during retinoid use, and start of a retinoid during a pregnancy varied from 0.0 to 0.4, and from 0.2 to 0.8, respectively. Conclusion: This study shows a limited impact of the 2018 RMMs on oral retinoids utilisation patterns among females of child-bearing age in four European countries. Pregnancies still occur during retinoid use, and oral retinoids are still prescribed to pregnant women. Contraception and pregnancy testing information was limited in most databases. Regulators, policymakers, prescribers, and researchers must rethink implementation strategies to avoid any pregnancy becoming temporarily related to retinoid use.
... Although most safety ratings stem from systemic isotretinoin, which is known to be highly teratogenic and strictly contraindicated during pregnancy, topical retinoids are minimally absorbed, and some studies suggest application to limited areas is unlikely to increase fetal risk. While early case reports described fetal malformations associated with topical retinoid use [51,52], multiple retrospective and prospective studies did not find an increased risk of major fetal malformations for topical tretinoin or adapalene during any trimester of pregnancy [53,54]. ...
Article
Full-text available
Acne vulgaris frequently affects women during pregnancy and lactation. Hormonal and physiologic changes in pregnancy contribute to the pathogenesis of acne during the various phases of pregnancy. Several effective acne treatments commonly prescribed in the general population are contraindicated during pregnancy or lactation. There is a lack of guidelines and updated resources on acne management in these populations. In this narrative review, we summarize existing evidence on the safety and efficacy of acne treatments during pregnancy and breastfeeding. Acne management in pregnancy and lactation should follow a stepwise approach based on severity to minimize risk. Topical therapies, such as benzoyl peroxide, azelaic acid, or keratolytics, can be used to treat mild-to-moderate disease. Moderate-to-severe acne may require systemic treatments, including penicillin, amoxicillin, cephalexin, and erythromycin, with special consideration for trimester-specific teratogenicity of medications and relevant medical history of the mother and infant. For refractory cases, oral or intralesional corticosteroids as well as laser and light therapies may be considered. This review provides an updated reference to aid patient-physician decision-making on acne management in these special populations.
... Topical Retinoids (Tretinoin, Adapalene, Tazarotene) Its capacity to modulate keratinocyte differentiation leads to its comedolytic and anti-inflammatory effect [146]. Only small amounts of topical tretinoin and adapalene are absorbed systemically; hence it is unlikely to lead to congenital malformations [167]. This was supported by Kaplan's meta-analysis on pregnancy outcomes following first-trimester exposure to topical retinoids where major increases in the rates of spontaneous abortions, congenital malformations, prematurity, and low birth weight were ruled out [168]. ...
Chapter
The prevalence of metabolic syndrome is increasing day by day, owing to the sedentary lifestyle, unhealthy food habits, genetic factors, environmental influences and many other conspicuous variables. Skin, aptly considered to be a mirror of internal organs, often manifests with certain signs and symptoms, suggestive of a diagnosis of metabolic syndrome. In this chapter, we have attempted to touch upon the dermatological manifestations (both common and uncommon) of metabolic syndrome.KeywordsMetabolic syndromeDiagnosisSkin manifestations
Article
Acne is one of the most common dermatological conditions to affect women of childbearing age, so it is important to consider the safety of long-term acne treatments on women who could become pregnant. In this review article, we clarify what management options are available to treat acne during pregnancy. Topical treatments, typically first-line for acne, such as azelaic acid, clindamycin, erythromycin, metronidazole, benzoyl peroxide, salicylic acid, dapsone, and retinoids, were reviewed. Systemic treatments, such as zinc supplements, cephalexin, cefadroxil, amoxicillin, azithromycin, erythromycin, and corticosteroids, typically second-line for acne, were also reviewed. Alternative treatments such as light therapy and cosmetic procedures were also evaluated. Due to recommendation of sunscreen utilization during acne treatments, sunscreen usage during pregnancy was also assessed. Management of acne during unplanned pregnancy was discussed in further detail regarding safety and adverse effects. Through summarized tables and examples of studies demonstrating safety and efficacy of treatments, the following is a resource for providers and patients to utilize for management of acne during pregnancy.
Article
Topical retinoids are among the most well‐studied and widely used cosmeceutical ingredients. Topical retinoids have skin rejuvenating benefits and can soften fine lines and wrinkles, lighten mottled hyperpigmentation, improve skin roughness, sallowness, and overall appearance of photoaged skin. Retinoic acid or tretinoin remains favored among dermatologists because there are a plethora of well‐designed clinical trials confirming its efficacy as a topical therapy for treating aging skin. In contrast, cosmeceutical retinoids are regulated as cosmetics and in general are not subjected to the same degree of scientific rigor as prescription retinoids. Despite this difference, there are studies confirming the antiaging benefits of cosmeceutical retinoids and studies comparing their efficacy and tolerability to tretinoin. This review will focus on over‐the‐counter retinoids including retinol, retinaldehyde, retinyl esters, adapalene, and novel retinoid molecules. Studies on pharmacokinetics, mechanisms of action, clinical benefits, and tolerability will be reviewed.
Chapter
Vitamin A is present in the skin where it plays a crucial role in epidermal turnover. Nutritional vitamin A deficiency, exposure to sunlight or any ultraviolet (UV) source, oxidative stress, and chronological aging may lead to epidermal vitamin A deficiency. Vitamin A and its endogenous and synthetic derivatives are collectively referred to as retinoids, because the biology of vitamin A was first discovered in the retina. Retinoids function as key regulators of differentiation and proliferation in various tissues. Retinoids may counteract some deleterious actions of UV radiations by physical and biological mechanisms. Topical natural retinoic acid precursors such as retinaldehyde or retinol are less irritant than acidic retinoids and may prevent epidermal vitamin A deficiency due to nutritional deficiency, exposure to sunlight, or any condition leading to free radical production. Retinoids may be combined with other compounds—with complementary actions against aging, nutritional deficiency, and cancer—such as antioxidants, to potentiate their beneficial effects on the skin.
Article
A isotretinoína é um ácido retinóico usado para tratar acne das mais diversas formas, sendo uma substância ativa do medicamento Roacutan®. Porém, seu uso indiscriminado durante o tratamento pode causar vários efeitos colaterais. Entre eles, a malformação congênita se destaca pela gravidade, pois o número expressivo de gestantes usuárias foi preocupante, tornando-se uma questão de saúde pública. A relevância desse tema está em discutir as circunstâncias em que o uso de retinoides no tratamento de afecções da pele podem causar malformação congênita durante a gestação. Como tais circunstâncias são frequentemente desconhecidas, estudos adicionais são necessários para levar essas informações ao público feminino que trata acne severa com prescrição desses medicamentos potencialmente causadores de problemas na gestação. O objetivo deste estudo foi analisar a origem dos retinoides, os riscos e contraindicações do uso desses medicamentos e seu papel na malformação congênita. A metodologia usada foi revisão da literatura usando artigos científicos das bases de dados digitais PubMed e SciELO publicados nos últimos cinco anos. A essência teratogênica da isotretinoína na gestação está bem estabelecida e o medicamento é prescrito para uso médico, mas contraindicado para gestantes, pois podem ocorrer gestações no curso do tratamento. Assim, seria relevante promover campanhas de conscientização sobre o tema para evitar futuras ocorrências da malformação congênita.
Article
Chronic skin disease is common in women of reproductive age. Although skin can improve or remain stable during pregnancy, it is also common for existing conditions to flare and for new conditions to develop. A small number of medications used to control chronic skin disease can potentially have adverse effects on the outcome of the pregnancy. This article forms part of a series on prescribing for pregnancy and highlights the importance of achieving good control of the skin disease prior to conception and during pregnancy. It emphasises the need for patient-centred, open and informed discussions around medication options to achieve good control. During pregnancy and breastfeeding each patient should be treated as an individual in accordance with the medications that are appropriate for them, their preferences, and the severity of their skin disease. This should be done through collaborative working across primary care, dermatology and obstetric services.
Article
Full-text available
Perception of risk may impact a woman's decision to take a needed drug during pregnancy. There is a paucity of research on this topic in the literature. (1) To evaluate the perception of risk of 17 commonly used drugs and other substances by pregnant women. (2) To investigate which sources of information regarding exposures during pregnancy were most commonly used by women. A questionnaire was developed through the University of Oslo's website for Internet surveys and posted on four Web pages used by pregnant women and mothers, from mid-September 2008 through October 2008. The inclusion criteria included women who were (1) pregnant or 2) a mother of a child less than 5 years old. A total of 1,793 eligible women completed the questionnaire. Most women overestimated the teratogenic risk associated with all the drugs during pregnancy. Characteristics of the women that were associated with a high perception of risk were primiparity, higher age, higher education, and choosing not to use a drug during pregnancy. More than 80% of the women had used drugs during pregnancy, mostly paracetamol, penicillins and reflux medications. The physician, the product information leaflet and the pharmacist were the three most frequently used sources of information. Women overestimate the risk of drug use and other exposures during pregnancy. Therefore, it is important for health care providers to use evidence-based information, to reduce unnecessary anxiety, and to ensure safe and appropriate treatment during pregnancy.
Article
Retinoids have a high teratogenicily for all species when administered orally. After topical use, derivatives available on French market (tretinoide, isotretinoide, adapalene) have been tested on animals. Results depend on the species and are sometimes contradictory. A small risk cannot be excluded but a high risk, of congenital anomalies, in the children of women treated with topical preparations during pregnancy is unlikely. Three isolated, différents and discussible malformations have been published. Nevertheless, French Medicine Agency asked for this survey. 132 cases have been collected and prospectively followed up. They come from Centres Régionaux de Pharmacovigilance and Centre de Renseignements sur les Agents Tératogènes. Women have a mean age of 29.5 (14-41). Exposure generally occurs within organogenesis (94 cases). 94 follows up are consistent and are normal in 76 cases (pregnancy, outcome and child). 8 miscarriages and 4 elective abortions are reported. One medical abortion for malformations is notified after adapalene applications (published case). Two fetal deaths occurred, one by cordonal link, the other one by oligoamnios. One neonatal death happened on one premature twin presenting hyaline membrane disease. Two malformations are described, one unilateral punctiform cataract and one congenital hydrocele associated to bilateral equinovarus. So, rates of miscarriages (8/94) and malformations (3/94) are those expected in general population. The legal mentions actually on use for these products (strict precaution with informative data) remain justified (considering the teratogenicily after oral administration) and are sufficient (in regard to contradictory anormal data, poor published human data and not worry results of this evaluation).
Article
Tazarotene (AGN 190168) is a new acetylenic retinoid which is effective for the topical treatment of patients with stable plaque psoriasis and mild to moderate acne vulgaris. Topical gel application provides direct delivery of tazarotene into the skin. At 10 hours after a topical application of 0.1% tazarotene gel to the skin of healthy individuals and patients with psoriasis, approximately 4 to 6% of the dose resided in the stratum corneum and 2% of the dose distributed to the viable epidermis and dermis. Tazarotene is rapidly hydrolysed by esterases to its active metabolite, tazarotenic acid. Tazarotenic acid does not accumulate in adipose tissue, but undergoes further metabolism to its sulfoxide and to other polar metabolites and is rapidly eliminated via both urinary and faecal pathways with a terminal half-life of about 18 hours. Percutaneous absorption is similar between healthy individuals and patients with facial acne, leading to plasma concentrations below 1 μ.g/L. The systemic bioavailability of tazarotene (measured as tazarotenic acid) is low, approximately 1% after single and multiple topical applications to healthy skin. In patients with psoriasis under typical conditions of use, systemic bioavailability increased during the initial 2 weeks of treatment from 1% (single dose) to 5% or less (steady state). The increased bioavailability is probably related to decreases in plaque elevation and scaling due to successful treatment, resulting in a less effective skin penetration barrier to tazarotene. Steady-state concentrations of tazarotenic acid are achieved within 2 weeks of topical treatment in both healthy and psoriatic skin types. The large variability in plasma concentrations observed in patients with psoriasis is probably because of the large differences in lesional skin condition, the amount of drug applied and the surface area of application. There was no significant drug accumulation in the body with long term treatment of patients with psoriasis. Topical administration of tazarotene requires dosages much smaller than those usually required for oral retinoids, such as isotretinoin, acitretin and etretinate, and it delivers the drug directly into the target skin tissues. The low systemic absorption and rapid systemic elimination of tazarotene and tazarotenic acid results in limited systemic exposure. Thus, topical tazarotene has a low potential for systemic adverse effects and is effective in the treatment of patients with acne and psoriasis.
Article
A single application of 17 g/kg or 8.7 mg/kg all-trans- [10,11-3H2]-retinoic acid dissolved in acetone to shaved dorsal hamster skin resulted in rapid absorption and dose-dependent rates of elimination. An equation describing a two-compartment open model with a very brief lag time and first-order uptake and elimination was used to describe the central plasma compartment kinetics. Unchanged all-trans-retinoic acid represented 4% of the total circulating radioactivity. Peak circulating concentrations of parent all-trans-retinoic acid were less than those observed after an equivalent oral dose, but prolonged absorption from the skin appears to contribute to high total bioavailability of topical retinoid. Topical administration to intact skin of up to three consecutive doses of 10.5 mg/kg/d all-trans-retinoic acid or a single 5 mg/kg dose of etretinate (Ro 10-9359) during a critical stage of embryogenesis in hamsters caused erythema and/or dose-dependent epidermal hyperplasia at the site of application, but failed to induce a significant teratogenic response. Topical application of 0.01–1.0 mg/kg arotinoid Ro 13- 6298 resulted in dose-dependent mucocutaneous toxicity and an increase in the numbers of dead embryos and malformed offspring. The marked skin toxicity and attenuated concentrations in maternal blood, compared to the oral route, limit the amounts of retinoid that can reach the hamster embryo. It is thus more important to compare the retinoid systemic values (absorbed dose) than it is to compare the oral or topical (applied) dose, when interpreting the results of conventional teratogenicity bioassays. The data suggest that in the human it is skin toxicity that limits the amounts of retinoid that can be applied and subsequently reach the embryo. In the rodent, overt skin toxicity under continued dosing could increase the amounts of retinoid penetrating the skin and reaching the embryo.
Article
The percutaneous absorption of clindamycin was studied in healthy male volunteers, comparing two investigative clindamycin (% w/v)/tretinoin (0.025% w/v) gels, containing clindamycin phosphate ester and clindamycin HCl, respectively, relative to a clindamycin phosphate lotion (1% clindamycin; Dalacin T®). Formulations were applied daily for 5 days on the face, according to a balanced complete block design. Redness of the skin was scored visually, and blood and urine were collected. Clindamycin plasma levels did not exceed the limit of quantification (5 ng mL−1) with the clindamycin phosphate formulations, but one volunteer who received the clindamycin HCl/tretinoin gel showed plasma levels of up to 13 ng mL−1. Clindamycin urinary excretion for 12 h after application of the clindamycin phosphate/tretinoin gel was comparable to the values of the reference lotion, whereas the clindamycin HCl/tretinoin gel gave significantly higher values. Erythema appeared to be associated with increased urinary excretion. The formulations were tolerated well. In a separate clinical pilot study in acne patients, the transdermal uptake of tretinoin and clindamycin from the clindamycin phosphate/tretinoin gel was monitored. Plasma samples were collected after 4 and 12 weeks of daily treatment. None of the study plasma samples contained measurable tretinoin levels. Clindamycin levels were not quantifiable in the majority (87%) of samples, the highest plasma level was 11 ng mL−1. The chemical form of clindamycin proved to modulate skin irritation and percutaneous uptake of clindamycin from a gel formulation in healthy subjects. There was no indications for a notable transdermal uptake of tretinoin during daily application of the gel in patients, nor for an enhancing effect of tretinoin on clindamycin uptake. Copyright © 1998 John Wiley & Sons, Ltd.
Article
Question: Many of my female patients complain about acne, unwanted hair growth, and other skin problems that have only developed since they became pregnant. Are products used for these types of benign skin conditions safe to use in pregnancy, as it is understandable that women want to look their best at this important time in their lives? Answer: With the exception of hydroquinone, which has a relatively high systemic absorption rate, and tretinoin, for which the evidence is controversial, these products act locally and therefore produce minimal systemic levels. Consequently, in most cases women can deal with these cosmetically unappealing skin conditions without compromising the safety of their unborn children.
Article
The potential systemic availability of retinoids from topically applied isotretinoin was assessed in 12 men with acne vulgaris. Isotretinoin 0.05% gel was applied to patients at a daily dose of 20 gm (equivalent to 10 mg of isotretinoin) over a 1900 cm2 surface area of skin on the face, back, and chest for 30 days. Blood samples were collected throughout the study and up to 48 hours after the last topical application; they were assayed for isotretinoin, tretinoin, and 4-oxo-isotretinoin by specific high-performance liquid chromatography. Plasma concentrations of isotretinoin, tretinoin, and 4-oxo-isotretinoin were not measurable (less than 20 ng/ml) at any time. Most adverse experiences were cutaneous; a few systemic adverse experiences were judged to be remotely related to topical drug administration. The lack of measurable plasma concentrations of isotretinoin, tretinoin, or 4-oxo-isotretinoin and systemic adverse experiences indicates negligible systemic availability of retinoids even after multiple application of isotretinoin 0.05% gel at doses approximately 12 times greater than normal daily use.