Article

Real-Time Remote Monitoring of Temperature and Humidity Within a Proton Exchange Membrane Fuel Cell Using Flexible Sensors

Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan.
Sensors (Impact Factor: 2.25). 12/2011; 11(9):8674-84. DOI: 10.3390/s110908674
Source: PubMed

ABSTRACT

This study developed portable, non-invasive flexible humidity and temperature microsensors and an in situ wireless sensing system for a proton exchange membrane fuel cell (PEMFC). The system integrated three parts: a flexible capacitive humidity microsensor, a flexible resistive temperature microsensor, and a radio frequency (RF) module for signal transmission. The results show that the capacitive humidity microsensor has a high sensitivity of 0.83 pF%RH(-1) and the resistive temperature microsensor also exhibits a high sensitivity of 2.94 × 10(-3) °C(-1). The established RF module transmits the signals from the two microsensors. The transmission distance can reach 4 m and the response time is less than 0.25 s. The performance measurements demonstrate that the maximum power density of the fuel cell with and without these microsensors are 14.76 mW·cm(-2) and 15.90 mW·cm(-2), with only 7.17% power loss.

Download full-text

Full-text

Available from: Ping-Hei Chen
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fuel cell vehicles are considered to be a viable solution to problems such as carbon emissions and fuel shortages for road transport. Proton Exchange Membrane (PEM) Fuel Cells are mainly used in this purpose because they can run at low temperatures and have a simple structure. Yet to make this technology commercially viable, there are still many hurdles to overcome. Apart from the high cost of fuel cell systems, high maintenance costs and short lifecycle are two main issues need to be addressed. The main purpose of this paper is to review the issues affecting the reliability and lifespan of fuel cells and present the state of the art in fuel cell condition monitoring and maintenance. The Structure of PEM fuel cell is introduced and examples of its application in a variety of applications are presented. The fault modes including membrane flooding/drying, fuel/gas starvation, physical defects of membrane, and catalyst poisoning are listed and assessed for their impact. Then the relationship between causes, faults, symptoms and long term implications of fault conditions are summarized. Finally the state of the art in PEM fuel cell condition monitoring and maintenance is reviewed and conclusions are drawn regarding suggested maintenance strategies and the optimal structure for an integrated, cost effective condition monitoring and maintenance management system.
    No preview · Article · Jan 2011
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This review offers new perspectives on the subject and highlights an area in need of further research. It includes an analysis of current scientific literature mainly covering the last decade and examines the trends in the development of electronic, acoustic and optical-fiber humidity sensors over this period. The major findings indicate that a new generation of sensor technology based on optical fibers is emerging. The current trends suggest that electronic humidity sensors could soon be replaced by sensors that are based on photonic structures. Recent scientific advances are expected to allow dedicated systems to avoid the relatively high price of interrogation modules that is currently a major disadvantage of fiber-based sensors.
    Full-text · Article · Feb 2014 · Sensors
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This review offers new perspectives on the subject and highlights an area in need of further research. It includes an analysis of current scientific literature mainly covering the last decade and examines the trends in the development of electronic, acoustic and optical-fiber humidity sensors over this period. The major findings indicate that a new generation of sensor technology based on optical fibers is emerging. The current trends suggest that electronic humidity sensors could soon be replaced by sensors that are based on photonic structures. Recent scientific advances are expected to allow dedicated systems to avoid the relatively high price of interrogation modules that is currently a major disadvantage of fiber-based sensors.
    Full-text · Article · Mar 2014 · Sensors
Show more