Corpus callosum alterations in very preterm infants: Perinatal correlates and 2 year neurodevelopmental outcomes

Florey Neuroscience Institutes, Centre for Neuroscience, The University of Melbourne, Melbourne, Vic 3010, Australia.
NeuroImage (Impact Factor: 6.36). 12/2011; 59(4):3571-81. DOI: 10.1016/j.neuroimage.2011.11.057
Source: PubMed


The aim of this study was to relate altered corpus callosum (CC) integrity in 106 very preterm (VPT) infants (<30 weeks' gestational age or <1250 g birth weight) at term equivalent to perinatal predictors and neurodevelopmental outcomes at two years. T1 and diffusion magnetic resonance images were obtained. The CC was traced, and divided into six sub-regions for cross-sectional area and shape analyses. Fractional anisotropy, mean, axial and radial diffusivity were sampled within the CC, and probabilistic tractography was performed. Perinatal predictors were explored. The Bayley Scales of Infant Development (BSID-II) was administered at two years. Intraventricular hemorrhage was associated with a smaller genu and altered diffusion values within the anterior and posterior CC of VPT infants. White matter injury was associated with widespread alterations to callosal diffusion values, especially posteriorly, and radial diffusivity was particularly elevated, indicating altered myelination. Reduced CC tract volume related to lower gestational age, particularly posteriorly. Reduced posterior callosal skew was associated with postnatal corticosteroid exposure. This more circular CC was associated with delayed cognitive development. Higher diffusivity, particularly in splenium tracts, was associated with impaired motor development. This study elucidates perinatal predictors and adverse neurodevelopmental outcomes associated with altered callosal integrity in VPT infants.

Download full-text


Available from: Simon K Warfield
  • Source
    • "The corpus callosum is the largest white matter fiber bundle and is crucial for inter-hemispheric communication of motor, sensory, and cognitive information. Another study reported injury and delayed development of the CC is associated with abnormal motor and cognitive outcomes at 2 years [56]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Premature infants exhibit widespread insults and delays in white matter maturation that can be sensitively detected early using diffusion tensor imaging. Diffusion tensor tractography facilitates in vivo visualization of white matter tracts and has the potential to be more sensitive than simpler two-dimensional DTI-based measures. However, the reliability and reproducibility of performing tractography for major white matter tracts in preterm infants is not known. The main objective of our study was to develop highly reliable and repeatable methods for ten white matter tracts in extremely low birth weight infants (birth weight ≤1000 g) at term-equivalent age. To demonstrate clinical utility, we also compared fiber microstructural and macrostructural parameters between preterm and healthy term controls. Twenty-nine ELBW infants and a control group of 15 healthy term newborns were studied. A team of researchers experienced in neuroanatomy/neuroimaging established the manual segmentation protocol based on a priori anatomical knowledge and an extensive training period to identify sources of variability. Intra- and inter-rater reliability and repeatability was tested using intra-class correlation coefficient, within-subject standard deviation (SD), repeatability, and Dice similarity index. Our results support our primary goal of developing highly reliable and reproducible comprehensive methods for manual segmentation of 10 white matter tracts in ELBW infants. The within-subject SD was within 1-2% and repeatability within 3-7% of the mean values for all 10 tracts. The intra-rater Dice index was excellent with a range of 0.97 to 0.99, and as expected, the inter-rater Dice index was lower (range: 0.80 to 0.91), but still within a very good reliability range. ELBW infants exhibited fewer fiber numbers and/or abnormal microstructure in a majority of the ten quantified tracts, consistent with injury/delayed development. This protocol could serve as a valuable tool for prompt evaluation of the impact of neuroprotective therapies and as a prognostic biomarker for neurodevelopmental impairments.
    Full-text · Article · Jan 2014 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Diffusion tensor imaging (DTI) reflects the maturation of the brain microstructure. Although preterm infants are at significant risk for altered brain microstructure, it remains unclear whether this is affected by prematurity itself or other clinical factors. Objectives: To investigate DTI parameters in preterm infants at a term-equivalent age (TEA) compared with healthy term infants and to assess the associations between DTI parameters and clinical factors that may affect brain development. Methods: We studied 34 preterm infants without apparent brain lesions and 12 healthy term infants using tract-based spatial statistics. Region-of-interest analysis was performed in the posterior and anterior limbs of the internal capsule (PLIC and ALIC), corpus callosum (CC), optic radiation, and cerebral peduncle. Results: Preterm infants had significantly decreased fractional anisotropy (FA) in nearly the entire white matter (WM) compared with term infants (p < 0.01). Multiple regression analysis showed that FA in the PLIC, ALIC, optic radiation, and cerebral peduncle were positively associated with postmenstrual age (PMA) at imaging and that the apparent diffusion coefficient was negatively associated with PMA. Only FA in the CC was positively correlated with gestational age. Chronic lung disease (CLD) and postnatal infection were associated with decreased FA in the CC and PLIC, respectively. Conclusions: Preterm infants at TEA showed an altered microstructure of the WM compared with healthy term infants. The altered microstructure of the measured WM except the CC was independent of the degree of prematurity. Chronic lung disease and postnatal infection are related to localized WM alterations.
    No preview · Article · Sep 2012 · Neonatology
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aims of this study were to investigate regional white matter microstructural differences between very preterm (<30 weeks’ gestational age and/or <1250g) and full term (≥37 weeks’ gestational age) infants at term corrected age with diffusion tensor imaging, and to explore perinatal predictors of diffusion measures, and the relationship between regional diffusion measures and neurodevelopmental outcomes at age 7 years in very preterm children. Mean (p=0.003), axial (p=0.008), and radial diffusivity (p=0.003) in total white matter were increased in very preterm compared with full term infants, with similar fractional anisotropy in the two groups. There was little evidence that group-wise differences were specific to any of the 8 regions studied for each hemisphere. Perinatal white matter abnormality and intraventricular hemorrhage (grade III or IV) were associated with increased diffusivity in the white matter of very preterm infants. Higher white matter diffusivity measures of the inferior occipital and cerebellar region at term equivalent age were associated with increased risk of impairments in motor and executive function at 7 years in very preterm children, but there was little evidence for associations with IQ or memory impairment. In conclusion, myelination is likely disrupted or delayed in very preterm infants, especially those with perinatal brain abnormality. Altered diffusivity at term-equivalent age helps explain impaired functioning at 7 years. This study defines the nature of microstructural alterations in very preterm infant white matter, assists in understanding the associated risk factors, and is the first study to reveal an important link between inferior occipital and cerebellar white matter disorganization in infancy, and executive and motor functioning 7 years later.
    No preview · Article · Jan 2013 · Cortex
Show more