Aged PROP1 deficient dwarf mice maintain ACTH production

Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America.
PLoS ONE (Impact Factor: 3.23). 12/2011; 6(12):e28355. DOI: 10.1371/journal.pone.0028355
Source: PubMed


Humans with PROP1 mutations have multiple pituitary hormone deficiencies (MPHD) that typically advance from growth insufficiency diagnosed in infancy to include more severe growth hormone (GH) deficiency and progressive reduction in other anterior pituitary hormones, eventually including adrenocorticotropic hormone (ACTH) deficiency and hypocortisolism. Congenital deficiencies of GH, prolactin, and thyroid stimulating hormone have been reported in the Prop1(null) (Prop1(-/-)) and the Ames dwarf (Prop1(df/df)) mouse models, but corticotroph and pituitary adrenal axis function have not been thoroughly investigated. Here we report that the C57BL6 background sensitizes mutants to a wasting phenotype that causes approximately one third to die precipitously between weaning and adulthood, while remaining homozygotes live with no signs of illness. The wasting phenotype is associated with severe hypoglycemia. Circulating ACTH and corticosterone levels are elevated in juvenile and aged Prop1 mutants, indicating activation of the pituitary-adrenal axis. Despite this, young adult Prop1 deficient mice are capable of responding to restraint stress with further elevation of ACTH and corticosterone. Low blood glucose, an expected side effect of GH deficiency, is likely responsible for the elevated corticosterone level. These studies suggest that the mouse model differs from the human patients who display progressive hormone loss and hypocortisolism.

Download full-text


Available from: Sally Camper, Dec 31, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pituitary organogenesis is a highly complex and tightly regulated process that depends on several transcription factors (TFs), such as PROP1, PIT1 (POU1F1), HESX1, LHX3 and LHX4. Normal pituitary development requires the temporally and spatially organised expression of TFs and interactions between different TFs, DNA and TF co-activators. Mutations in these genes result in different combinations of hypopituitarism that can be associated with structural alterations of the central nervous system, causing the congenital form of panhypopituitarism. This review aims to elucidate the complex process of pituitary organogenesis, to clarify the role of the major TFs, and to compile the lessons learned from functional studies of TF mutations in panhypopituitarism patients and TF deletions or mutations in transgenic animals.
    Full-text · Article · Aug 2012 · Journal of Endocrinology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transcription factor GATA6 is expressed in the fetal and adult adrenal cortex and has been implicated in steroidogenesis. To characterize the role of transcription factor GATA6 in adrenocortical development and function, we generated mice in which Gata6 was conditionally deleted using Cre-LoxP recombination with Sf1-cre. The adrenal glands of adult Gata6 conditional knockout (cKO) mice were small and had a thin cortex. Cytomegalic changes were evident in fetal and adult cKO adrenal glands, and chromaffin cells were ectopically located at the periphery of the glands. Corticosterone secretion in response to exogenous ACTH was blunted in cKO mice. Spindle-shaped cells expressing Gata4, a marker of gonadal stroma, accumulated in the adrenal subcapsule of Gata6 cKO mice. RNA analysis demonstrated the concomitant upregulation of other gonadal-like markers, including Amhr2, in the cKO adrenal glands, suggesting that GATA6 inhibits the spontaneous differentiation of adrenocortical stem/progenitor cells into gonadal-like cells. Lhcgr and Cyp17 were overexpressed in the adrenal glands of gonadectomized cKO vs control mice, implying that GATA6 also limits sex steroidogenic cell differentiation in response to the hormonal changes that accompany gonadectomy. Nulliparous female and orchiectomized male Gata6 cKO mice lacked an adrenal X-zone. Microarray hybridization identified Pik3c2g as a novel X-zone marker that is downregulated in the adrenal glands of these mice. Our findings offer genetic proof that GATA6 regulates the differentiation of steroidogenic progenitors into adrenocortical cells.
    Full-text · Article · Mar 2013 · Endocrinology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many aspects of pituitary development have become better understood in the past two decades. The signaling pathways regulating pituitary growth and shape have emerged, and the balancing interactions between the pathways are now appreciated. Markers for multipotent progenitor cells are being identified, and signature transcription factors have been discovered for most hormone-producing cell types. We now realize that pulsatile hormone secretion involves a 3D integration of cellular networks. About a dozen genes are known to cause pituitary hypoplasia when mutated due to their essential roles in pituitary development. Similarly, a few genes are known that predispose to familial endocrine neoplasia, and several genes mutated in sporadic pituitary adenomas are documented. In the next decade, we anticipate gleaning a deeper appreciation of these processes at the molecular level, insight into the development of the hypophyseal portal blood system, and evolution of better therapeutics for congenital and acquired hormone deficiencies and for common craniopharyngiomas and pituitary adenomas.
    Full-text · Article · Dec 2013 · Current Topics in Developmental Biology
Show more