Regulation of alveolar epithelial cell apoptosis and pulmonary fibrosis by coordinate expression of components of the fibrinolytic system

Texas Lung Injury Institute, Department of Medicine, The University of Texas Health Science Center, Tyler, Texas 75708, USA.
AJP Lung Cellular and Molecular Physiology (Impact Factor: 4.08). 12/2011; 302(5):L463-73. DOI: 10.1152/ajplung.00099.2011
Source: PubMed


Alveolar type II (ATII) cell apoptosis and depressed fibrinolysis that promotes alveolar fibrin deposition are associated with acute lung injury (ALI) and the development of pulmonary fibrosis (PF). We therefore sought to determine whether p53-mediated inhibition of urokinase-type plasminogen activator (uPA) and induction of plasminogen activator inhibitor-1 (PAI-1) contribute to ATII cell apoptosis that precedes the development of PF. We also sought to determine whether caveolin-1 scaffolding domain peptide (CSP) reverses these changes to protect against ALI and PF. Tissues as well as isolated ATII cells from the lungs of wild-type (WT) mice with BLM injury show increased apoptosis, p53, and PAI-1, and reciprocal suppression of uPA and uPA receptor (uPAR) protein expression. Treatment of WT mice with CSP reverses these effects and protects ATII cells against bleomycin (BLM)-induced apoptosis whereas CSP fails to attenuate ATII cell apoptosis or decrease p53 or PAI-1 in uPA-deficient mice. These mice demonstrate more severe PF. Thus p53 is increased and inhibits expression of uPA and uPAR while increasing PAI-1, changes that promote ATII cell apoptosis in mice with BLM-induced ALI. We show that CSP, an intervention targeting this pathway, protects the lung epithelium from apoptosis and prevents PF in BLM-induced lung injury via uPA-mediated inhibition of p53 and PAI-1.

  • Source
    • "Marked protection by CSP was noted against AEC apoptosis when IP injected in mice with silica-induced lung injury, indicating a potential avenue for intervention of lung injury associated with occupational chronic silica exposure. The peptide based approach is further supported by the earlier observations from our laboratory that CSP protects lung epithelial cells when administered after lung injury due to bleomycin or cigarette smoke exposure (Bhandary et al., 2012; Shetty et al., 2012b). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Silica is the major component of airborne dust generated by wind, manufacturing and/or demolition. Chronic occupational inhalation of silica dust containing crystalline quartz is by far the predominant form of silicosis in humans. Silicosis is a progressive lung disease that typically arises after a very long latency and is a major occupational concern with no known effective treatment. The mechanism of silicosis is not clearly understood. However, silicosis is associated with increased cell death, expression of redox enzymes and pro-fibrotic cytokines and chemokines. Since alveolar epithelial cell (AEC) death and disruption of alveolar fibrinolysis is often associated with both acute and chronic lung injuries, we explored whether p53-mediated changes in the urokinase-type plasminogen activator (uPA) system contributes to silica-induced lung injury. We further sought to determine whether caveolin-1 scaffolding domain peptide (CSP), which inhibits p53 expression, mitigates lung injury associated with exposure to silica. Lung tissues and AECs isolated from wild-type (WT) mice exposed to silica exhibit increased apoptosis, p53 and PAI-1, and suppression of uPA expression. Treatment of WT mice with CSP inhibits PAI-1, restores uPA expression and prevents AEC apoptosis by suppressing p53, which is otherwise induced in mice exposed to silica. The process involves CSP-mediated inhibition of serine-15 phosphorylation of p53 by inhibition of protein phosphatase 2A-C (PP2A-C) interaction with silica-induced caveolin-1 in AECs. These observations suggest that changes in the p53-uPA fibrinolytic system cross-talk contribute to lung injury caused by inhalation of silica dust containing crystalline quartz and is protected by CSP by targeting this pathway. Copyright © 2015. Published by Elsevier Inc.
    Full-text · Article · Jan 2015 · Toxicology and Applied Pharmacology
  • Source
    • "In pulmonary fibrosis, changes in both the coagulation cascade itself and the resolution of the wound-healing clot can affect the disease. Impaired fibrin degradation for instance has been shown to worsen epithelial cell survival [163]. Impaired resolution of clots can be caused by either the absence of PA [164] or by increased production of PA inhibitors PAI-1 or PAI-2 [165]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Macrophages are among the most abundant cells in the respiratory tract, and they can have strikingly different phenotypes within this environment. Our knowledge of the different phenotypes and their functions in the lung is sketchy at best, but they appear to be linked to the protection of gas exchange against microbial threats and excessive tissue responses. Phenotypical changes of macrophages within the lung are found in many respiratory diseases including asthma, chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis. This paper will give an overview of what macrophage phenotypes have been described, what their known functions are, what is known about their presence in the different obstructive and restrictive respiratory diseases (asthma, COPD, pulmonary fibrosis), and how they are thought to contribute to the etiology and resolution of these diseases.
    Full-text · Article · Feb 2013 · Mediators of Inflammation
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Increased expression of tumor suppressor protein p53 and of plasminogen activator inhibitor (PAI)-1 is associated with cigarette smoke (CS) exposure-induced lung epithelial injury. p53 induces PAI-1 through mRNA stabilization in lung epithelial cells. However, it is unclear how this process affects lung epithelial damage. Here, we show that CS induces p53 and PAI-1 expression and apoptosis in cultured Beas2B and primary alveolar type (AT)II cells. CS exposure augmented binding of p53 protein with PAI-1 mRNA. Inhibition of p53 from binding to PAI-1 mRNA through expression of p53-binding 70 nt PAI-1 mRNA 3'UTR sequences suppressed CS-induced PAI-1 expression. Treatment of Beas2B cells with caveolin-1 scaffolding domain peptide (CSP) suppressed p53 expression and p53-PAI-1 mRNA interaction. These changes were associated with parallel inhibition of CS-induced PAI-1 expression and apoptosis in Beas2B cells. Wild-type mice exposed to passive CS likewise show augmented p53 and PAI-1 with parallel induction of ATII cell apoptosis, whereas mice deficient for p53 or PAI-1 expression resisted apoptosis of ATII cells. CSP suppressed CS-induced ATII cell apoptosis in wild-type mice and abrogated p53-PAI-1 mRNA interaction with parallel inhibition of p53 and PAI-1 expression. The protection against ATII cell apoptosis by CSP involves inhibition of passive CS-induced proapoptotic Bax and Bak expression and restoration of the prosurvival proteins Bcl-X(L). These observations demonstrate that inhibition of p53 binding to PAI-1 mRNA 3'UTR attenuates CS-induced ATII cell apoptosis. This presents a novel link between p53-mediated PAI-1 expression and CS-induced ATII cell apoptosis.
    Full-text · Article · May 2012 · American Journal of Respiratory Cell and Molecular Biology
Show more