Potato Suberin Induces Differentiation and Secondary Metabolism in the Genus Streptomyces

Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada.
Microbes and Environments (Impact Factor: 2.23). 12/2011; 27(1):36-42. DOI: 10.1264/jsme2.ME11282
Source: PubMed


Bacteria of the genus Streptomyces are soil microorganisms with a saprophytic life cycle. Previous studies have revealed that the phytopathogenic agent S. scabiei undergoes metabolic and morphological modifications in the presence of suberin, a complex plant polymer. This paper investigates morphological changes induced by the presence of potato suberin in five species of the genus Streptomyces, with emphasis on S. scabiei. Streptomyces scabiei, S. acidiscabies, S. avermitilis, S. coelicolor and S. melanosporofaciens were grown both in the presence and absence of suberin. In all species tested, the presence of the plant polymer induced the production of aerial hyphae and enhanced resistance to mechanical lysis. The presence of suberin in liquid minimal medium also induced the synthesis of typical secondary metabolites in S. scabiei and S. acidiscabies (thaxtomin A), S. coelicolor (actinorhodin) and S. melanosporofaciens (geldanamycin). In S. scabiei, the presence of suberin modified the fatty acid composition of the bacterial membrane, which translated into higher membrane fluidity. Moreover, suberin also induced thickening of the bacterial cell wall. The present data indicate that suberin hastens cellular differentiation and triggers the onset of secondary metabolism in the genus Streptomyces.

Download full-text


Available from: Gilles Grondin
  • Source
    • "Phenolic suberin compounds might be partly responsible for the high glycosyl hydrolase activity since various phenolic compounds such as gallic acid, tannic acid, maleic acid and salicylic acid were shown to induce expression of various genes encoding cellulases [20]. The promotion of secondary metabolism by suberin [6] could also explain this overproduction as the A-factor regulon includes many extracellular glycosyl hydrolases in S. griseus[21]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Suberin is a recalcitrant plant biopolymer composed of a polyphenolic and a polyaliphatic domain. Although suberin contributes to a significant portion of soil organic matter, the biological process of suberin degradation is poorly characterized. It has been suggested that Streptomyces scabiei, a plant pathogenic bacterium, can produce suberin-degrading enzymes. In this study, a comparative analysis of the S. scabiei secretome from culture media supplemented or not with potato suberin was carried out to identify enzymes that could be involved in suberin degradation. Methods S. scabiei was grown in the presence of casein only or in the presence of both casein and suberin. Extracellular proteins from 1-, 3- and 5-day-old supernatants were analyzed by LC-MS/MS to determine their putative functions. Real-time RT-PCR was performed to monitor the expression level of genes encoding several proteins potentially involved in suberin degradation. Results The effect of suberin on the extracellular protein profile of S. scabiei strain has been analyzed. A total of 246 proteins were found to be common in the data sets from both casein medium (CM) and casein-suberin medium (CSM), whereas 124 and 139 proteins were detected only in CM or CSM, respectively. The identified proteins could be divided into 19 functional groups. Two functional groups of proteins (degradation of aromatic compounds and secondary metabolism) were only associated with the CSM. A high proportion of the proteins found to be either exclusively produced, or overproduced, in presence of suberin were involved in carbohydrate metabolism. Most of the proteins included in the lipid metabolism class have been detected in CSM. Apart from lipid metabolism proteins, other identified proteins, particularly two feruloyl esterases, may also actively participate in the breakdown of suberin architecture. Both feruloyl esterase genes were overexpressed between 30 to 340 times in the presence of suberin. Conclusion This study demonstrated that the presence of suberin in S. scabiei growth medium induced the production of a wide variety of glycosyl hydrolases. Furthermore, this study has allowed the identification of extracellular enzymes that could be involved in the degradation of suberin, including enzymes of the lipid metabolism and feruloyl esterases.
    Full-text · Article · Jun 2014 · Proteome Science
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Success in biological control of plant diseases remains inconsistent in the field. A collection of well- characterized Streptomyces antagonists (n=19 isolates) was tested for their capacities to inhibit pathogenic Streptomyces scabies (n=15 isolates). There was significant variation among antagonists in ability to inhibit pathogen isolates and among pathogens in their susceptibility to inhibition. Only one antagonist could inhibit all pathogens, and antagonist-pathogen interactions were highly specific, highlighting the limitations of single-strain inoculum in biocontrol. However, the collection of pathogens could be inhibited by several combinations of antagonists, suggested the potential for successful antagonist mixtures. Urea generally increased effectiveness of antagonists at inhibiting pathogens in vitro (increased mean inhibition zones), but its specific effects varied among antagonist-pathogen combinations. In greenhouse trials, urea enhanced the effectiveness of antagonist mixtures relative to individual antagonists in controlling potato scab. While antagonist mixtures were frequently antagonistic in the absence of urea, all n = 2 and n = 3 antagonist isolate combinations were synergistic in the presence of urea. This work provides insights into the efficacy of single- vs. multiple-strain inocula in biological control and on the potential for nutrients to influence mixture success.
    Full-text · Article · Oct 2012 · Phytopathology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Streptomyces is a large genus consisting of soil-dwelling, filamentous bacteria that are best known for their capability of producing a vast array of medically and agriculturally useful secondary metabolites. In addition, a small number of Streptomyces spp. are capable of colonizing and infecting the underground portions of living plants and causing economically important crop diseases such as potato common scab (CS). Research into the mechanisms of Streptomyces plant pathogenicity has led to the identification and characterization of several phytotoxic secondary metabolites that are known or suspected of contributing to diseases in various plants. The best characterized are the thaxtomin phytotoxins, which play a critical role in the development of CS, acid scab and soil rot of sweet potato. In addition, the best-characterized CS-causing pathogen, S. scabies, produces a molecule that is predicted to resemble the Pseudomonas syringae coronatine phytotoxin and which contributes to seedling disease symptom development. Other Streptomyces phytotoxic secondary metabolites that have been identified include concanamycins, FD-891 and borrelidin. Furthermore, there is evidence that additional, unknown metabolites may participate in Streptomyces plant pathogenicity. Such revelations have implications for the rational development of better management procedures for controlling CS and other Streptomyces plant diseases. This article is protected by copyright. All rights reserved.
    Preview · Article · Oct 2013 · Journal of Applied Microbiology
Show more