Effect of polymorphisms in the leptin, leptin receptor and acyl-CoA: diacylglycerol acyltransferase 1 (DGAT1) genes and genetic polymorphism of milk proteins on bovine milk composition

ArticleinJournal of Dairy Research 79(1):1-9 · November 2011with8 Reads
Impact Factor: 1.60 · DOI: 10.1017/S0022029911000859 · Source: PubMed


    The relations between cow genetics and milk composition have gained a lot of attention during the past years, however, generally only a few compositional traits have been examined. The aim of this study was to determine if polymorphisms in the leptin (LEP), leptin receptor (LEPR) and acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) genes as well as genetic polymorphism of β-casein (β-CN), κ-CN and β-lactoglobulin (β-LG) impact several bovine milk composition traits. Individual milk samples from the Swedish Red and Swedish Holstein breeds were analyzed for components in the protein, lipid, carbohydrate and mineral profiles. Cow alleles were determined on the following SNP: A1457G, A252T, A59V and C963T on the LEP gene, T945M on the LEPR gene and Nt984+8(A-G) on the DGAT1 gene. Additionally, genetic variants of β-CN, κ-CN and β-LG were determined. For both the breeds, the same tendency of minor allele frequency was found for all SNPs and protein genes, except on LEPA1457G and LEPC963T. This study indicated significant (P<0·05) associations between the studied SNPs and several compositional parameters. Protein content was influenced by LEPA1457G (G>A) and LEPC963T (T>C), whereas total Ca, ionic Ca concentration and milk pH were affected by LEPA1457G, LEPA59V, LEPC963T and LEPRT945M. However, yields of milk, protein, CN, lactose, total Ca and P were mainly affected by β-CN (A2>A1) and κ-CN (A>B>E). β-LG was mainly associated with whey protein yield and ionic Ca concentration (A>B). Thus, this study shows possibilities of using these polymorphisms as markers within genetic selection programs to improve and adjust several compositional parameters.