Valosin-containing protein and neurofibromin interact to regulate dendritic spine density

Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
The Journal of clinical investigation (Impact Factor: 13.22). 11/2011; 121(12):4820-37. DOI: 10.1172/JCI45677
Source: PubMed


Inclusion body myopathy with Paget disease of bone and frontotemporal dementia (IBMPFD) is an autosomal dominant disorder characterized by progressive myopathy that is often accompanied by bone weakening and/or frontotemporal dementia. Although it is known to be caused by mutations in the gene encoding valosin-containing protein (VCP), the underlying disease mechanism remains elusive. Like IBMPFD, neurofibromatosis type 1 (NF1) is an autosomal dominant disorder. Neurofibromin, the protein encoded by the NF1 gene, has been shown to regulate synaptogenesis. Here, we show that neurofibromin and VCP interact and work together to control the density of dendritic spines. Certain mutations identified in IBMPFD and NF1 patients reduced the interaction between VCP and neurofibromin and impaired spinogenesis. The functions of neurofibromin and VCP in spinogenesis were shown to correlate with the learning disability and dementia phenotypes seen in patients with IBMPFD. Consistent with the previous finding that treatment with a statin rescues behavioral defects in Nf1(+/-) mice and providing further support for our hypothesis that there is crosstalk between neurofibromin and VCP, statin exposure neutralized the effect of VCP knockdown on spinogenesis in cultured hippocampal neurons. The data presented here demonstrate that there is a link between IBMPFD and NF1 and indicate a role for VCP in synapse formation.

Download full-text


Available from: Chao Hsu-Wen, Feb 10, 2015
  • Source
    • "The details for the Golgi staining have been described previously (Chen et al., 2011; Wang et al., 2011). Golgi impregnated hippocampal CA1 neurons were captured using a Zeiss AxioImager-Z1 microscope equipped with an AxioCam HR system (Carl Zeiss), a 63 × /1.4 oil (Plan-APO, Carl Zeiss) objective and AxioVision software (Carl Zeiss). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Innate immune responses have been shown to influence brain development and function. Dysregulation of innate immunity is significantly associated with psychiatric disorders such as autism spectrum disorders and schizophrenia, which are well-known neurodevelopmental disorders. Recent studies have revealed that critical players of the innate immune response are expressed in neuronal tissues and regulate neuronal function and activity. For example, Sarm1, a negative regulator that acts downstream of Toll-like receptor (TLR) 3 and 4, is predominantly expressed in neurons. We have previously shown that Sarm1 regulates neuronal morphogenesis and the expression of inflammatory cytokines in the brain, which then affects learning ability, cognitive flexibility, and social interaction. Because impaired neuronal morphogenesis and dysregulation of cytokine expression may disrupt neuronal activity, we investigated whether Sarm1 knockdown affects the synaptic responses of neurons. We here show that reduced Sarm1 expression impairs metabotropic glutamate receptor (mGluR)-dependent long-term depression (LTD) formation but enhances N-methyl-D-aspartate receptor (NMDAR)-dependent long-term potentiation production in hippocampal CA1 neurons. The expression levels of post-synaptic proteins, including NR2a, NR1, Shank1 and Shank3, are also altered in Sarm1 knockdown mice, suggesting a role for Sarm1 in the maintenance of synaptic homeostasis. The addition of a positive allosteric modulator of mGluR5, CDPPB, ameliorates the LTD defects in slice recording and the behavioral deficits in social interaction and associative memory. These results suggest an important role for mGluR5 signaling in the function of Sarm1. In conclusion, our study demonstrates a role for Sarm1 in the regulation of synaptic plasticity. Through these mechanisms, Sarm1 knockdown results in the impairment of associative memory and social interactions in mice.
    Full-text · Article · Apr 2014 · Frontiers in Cellular Neuroscience
  • Source
    • "In addition, loss-of-function mutations in the SMN (Survival motor neuron) gene, the causative gene of the motor neurone disease spinal muscular atrophy (SMA), induces defects in axons and synaptic structure (Torres-Benito et al., 2012). Similar results have been reported for the ALS-linked gene VCP (Valosin Containing Protein) as mutations in this gene lead to impaired synaptogenesis and spinogenesis (Wang et al., 2011). To study the effect of DVAP-WT and mutant DVAP-V260I transgenes on synaptic remodeling and structure, we focused on the Drosophila larval NMJ. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Amyotrophic Lateral Sclerosis (ALS) is a motor neuron degenerative disease characterized by a progressive, and ultimately fatal, muscle paralysis. The human VAMP-Associated Protein B (hVAPB) is the causative gene of ALS type 8. Previous studies have shown that a loss-of-function mechanism is responsible for VAPB-induced ALS. Recently, a novel mutation in hVAPB (V234I) has been identified but its pathogenic potential has not been assessed. We found that neuronal expression of the V234I mutant allele in Drosophila (DVAP-V260I) induces defects in synaptic structure and microtubule architecture that are opposite to those associated with DVAP mutants and transgenic expression of other ALS-linked alleles. Expression of DVAP-V260I also induces aggregate formation, reduced viability, wing postural defects, abnormal locomotion behavior, nuclear abnormalities, neurodegeneration and upregulation of the heat-shock-mediated stress response. Similar, albeit milder, phenotypes are associated with the overexpression of the wild-type protein. These data show that overexpressing the wild-type DVAP is sufficient to induce the disease and that DVAP-V260I is a pathogenic allele with increased wild-type activity. We propose that a combination of gain- and loss-of-function mechanisms is responsible for VAPB-induced ALS.
    Full-text · Article · Dec 2013 · Biology Open
  • Source
    • "If a specific p97/CDC-48 inhibitor is available, it will be also useful as another tool for the detailed analysis of p97/CDC-48 function both in vitro and in vivo. Seven p97/CDC-48 inhibitors have been reported so far: (1) Eeyarestatin I [82], (2) 2-Anilino-4-aryl-1,3-thiazole [8], (3) the Syk inhibitor III [11], (4) N2,N4-dibenzylquinazoline-2,4-diamine (DBeQ) [11] [13], (5) Sorafenib [100], (6) alkylsulfanyl-1,2,4-triazoles [58] and (7) Xanthohumol [69] "
    [Show abstract] [Hide abstract]
    ABSTRACT: P97/CDC-48 is a prominent member of a highly evolutionary conserved Walker cassette - containing AAA+ ATPases. It has been involved in numerous cellular processes ranging from the control of protein homeostasis to membrane trafficking through the intervention of specific accessory proteins. Expression of p97/CDC-48 in cancers has been correlated with tumor aggressiveness and prognosis, however the precise underlying molecular mechanisms remain to be characterized. Moreover p97/CDC-48 inhibitors were developed and are currently under intense investigation as anticancer drugs. Herein, we discuss the role of p97/CDC-48 in cancer development and its therapeutic potential in tumor cell biology.
    Full-text · Article · May 2013 · Cancer letters
Show more