Comparison of three different inhalant anesthetic agents (isoflurane, sevoflurane, desflurane) in red-tailed hawks (Buteo jamaicensis)

Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA.
Veterinary Anaesthesia and Analgesia (Impact Factor: 1.72). 11/2011; 39(1):29-37. DOI: 10.1111/j.1467-2995.2011.00668.x
Source: PubMed


To compare isoflurane, sevoflurane and desflurane for inhalant anesthesia in red-tailed hawks (Buteo jamaicensis) in terms of the speed and characteristics of induction; cardiovascular and respiratory parameters while anesthetized; and speed and quality of recovery.
Prospective, cross over, randomized experimental study.
12 healthy adult red-tailed hawks.
Anesthesia was induced with isoflurane, sevoflurane or desflurane in oxygen via face mask in a crossover, randomized design with a 1 week washout period between each treatment. Hawks were tracheally intubated, allowed to breathe spontaneously, and instrumented for cardiopulmonary monitoring. Data collected included heart rate, respiratory rate, end-tidal CO(2) , inspired and expired agent, SpO(2,) temperature, systolic blood pressure, time to intubation and time to recovery (tracking). Recovery was subjectively scored on a 4 point scale as well as a summary evaluation, by a single blinded observer.
No significant difference in time to induction and time to extubation was noted with the administration of isoflurane, sevoflurane or desflurane. Time to the ability of the bird to follow a moving object with its eyes (tracking) was significantly faster with the administration of sevoflurane and desflurane. All recoveries were scored 1 or 2 and were assessed as good to excellent. No significant difference was noted in heart rate, blood pressure and temperature among the three inhalants. Administration of isoflurane resulted in lower respiratory rates.
Overall, although isoflurane remains the most common inhaled anesthetic in avian practice, sevoflurane and desflurane both offer faster time to tracking, while similar changes in cardiopulmonary function were observed with each agent during anesthesia of healthy red-tailed hawks.

26 Reads
  • Source
    • "Recovery from isoflurane is primarily due to the elimination of the gas by the lungs [5] [18] [21] [25]. Because of their small size and high body surface to volume ratio and the use of high oxygen flow rates, hypothermia develops quickly during anaesthesia in birds [4] [21]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: This study aimed to determine the effect of intermittent positive pressure ventilation (IPPV) on the depth of inhalation anaesthesia in parrots. Anaesthesia was induced with 3.0% isoflurane in six Sulphur-crested Cockatoos (Cacatua galerita galerita) and maintained using either 1.5% or 3.0% during spontaneous ventilation (SV) or IPPV at 6 (IPPV-6) or 12 (IPPV-12) breaths per minute. The time taken for the appearance of somatic reflexes and the return of SV after IPPV was recorded. During recovery, the body jerk, beak, eye, and shivering reflexes appeared after 126 ± 27 s, 133 ± 26 s, 165 ± 34 s, and 165 ± 44 s, respectively. All cockatoos developed apnoea after IPPV-12 and only some did after IPPV-6. Return of SV after IPPV-12 was delayed compared to IPPV-6. Recovery times after the SV runs were significantly different between 1.5% and 3.0% isoflurane anaesthesia. Similarly, after IPPV, the recovery times were significantly different between 1.5% and 3.0% isoflurane anaesthesia. Recovery times after 3.0% inhaled isoflurane were longer than those of 1.5% inhaled isoflurane. In conclusion, cockatoos recovering from isoflurane anaesthesia are likely to exhibit body jerk, beak, eye, and shivering reflexes in that order. IPPV increases the depth of anaesthesia in a rate and dose-related manner and prolongs recovery.
    Full-text · Article · Jan 2014 · Veterinary Medicine International
  • Source
    • "The use of ketamine and ketamine/diazepam decreased the induction time (44% and 54% in KS and KDS groups, respectively), presumably because these agents potentiate inhalant anaesthetics [20]. The induction time observed in the birds that did not receive premedication was shorter than those reported for thick-billed parrots (3 min with 5% sevoflurane in oxygen 1 L/min) [12] and red-tailed hawks (3.6 minutes with 5.75% sevoflurane in oxygen 1 L/min) [21]. However, comparing the times necessary for induction across these studies is difficult due to differences in species and the definition of time to induction. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Premedication is rarely used in avian species. The aim of this study was to evaluate the effect of premedication on the quality of sevoflurane induction and anaesthesia in parrots. We hypothesised that premedication would facilitate handling and decrease the minimum anaesthetic dose (MAD). Thirty-six adult parrots were randomly distributed in three groups: group S (n = 12) was premedicated with NaCl 0.9%; group KS (n = 12) was premedicated with 10 ketamine; and group KDS (n = 12) was premedicated with 10 ketamine and 0.5 diazepam, delivered intramuscularly. After induction using 4.5% sevoflurane introduced through a facemask, the MAD was determined for each animal. The heart rate (HR), respiratory rate (RR), systolic arterial blood pressure (SAP), and cloacal temperature (CT) were recorded before premedication (T0), 15 minutes after premedication (T1), and after MAD determination (T2). Arterial blood gas analyses were performed at T0 and T2. The quality of anaesthesia was evaluated using subjective scales based on animal behaviour and handling during induction, maintenance, and recovery. Statistical analyses were performed using analysis of variance or Kruskal-Wallis tests followed by Tukey's or Dunn's tests. The minimal anaesthetic doses obtained were 2.4 +/- 0.37%, 1.7 +/- 0.39%, and 1.3 +/- 0.32% for groups S, KS, and KDS, respectively. There were no differences in HR, RR, or CT among groups, but SAP was significantly lower in group S. Sedation was observed in both the premedicated S-KS and S-KDS groups. There were no differences in the quality of intubation and recovery from anaesthesia among the three groups, although the induction time was significantly shorter in the pre-medicated groups, and the KS group showed less muscle relaxation. Ketamine alone or the ketamine/diazepam combination decreased the MAD of sevoflurane in parrots (Amazona aestiva). Ketamine alone or in combination with diazepam promoted a good quality of sedation, which improved handling and reduced the stress of the birds. All protocols provided safe anaesthesia in this avian species.
    Full-text · Article · Jul 2013 · BMC Veterinary Research
  • [Show abstract] [Hide abstract]
    ABSTRACT: This article reviews advances in the pharmacokinetics and pharmacodynamics of therapeutic agents used in avian medicine. There has been a significant body of work published within the last 5 years that has helped provide a scientific basis for drug treatment in avian patients. This concise summary of different studies on antibacterial, antifungal, analgesic, sedative and anesthetic, hormone (e.g., deslorelin), psychotropic, antiepileptic, and cardiovascular drugs provides evidence of the advancements in this area of companion exotic animal medicine.
    No preview · Article · Jan 2013 · Journal of Exotic Pet Medicine
Show more